{ "cells": [ { "cell_type": "markdown", "id": "d6495895", "metadata": {}, "source": [ "# Getting started (for datasets with aligned features)\n", "\n", "Import the required packages:" ] }, { "cell_type": "code", "execution_count": 1, "id": "6935113b", "metadata": {}, "outputs": [], "source": [ "import os\n", "import sys\n", "from pathlib import Path\n", "\n", "import numpy as np\n", "import pandas as pd\n", "from matplotlib import pyplot as plt # optional\n", "import seaborn as sns # optional\n", "\n", "import scanpy as sc\n", "from scipy import sparse\n", "\n", "import networkx as nx\n", "import torch" ] }, { "cell_type": "markdown", "id": "68f64687", "metadata": {}, "source": [ "If you get trouble with installing CAME, you can download the source code from GitHub, \n", "and append the path to `sys.path`. For example:\n", "\n", "```python\n", "CAME_ROOT = Path('path/to/CAME')\n", "sys.path.append(str(CAME_ROOT))\n", "```" ] }, { "cell_type": "code", "execution_count": 2, "id": "c20e3fe2", "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "Using backend: pytorch\n" ] } ], "source": [ "import came\n", "from came import pipeline, pp, pl\n", "\n", "ROOT = Path(\".\") # set root" ] }, { "cell_type": "markdown", "id": "7396c5e5", "metadata": {}, "source": [ "## 0 Load datasets\n", "\n", "### 0.1 Load the example datasets" ] }, { "cell_type": "code", "execution_count": 3, "id": "00d1ffd3", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "dict_keys(['adatas', 'varmap', 'varmap_1v1', 'dataset_names', 'key_class'])\n", "a new directory made:\n", "\t_temp\\('Baron_human', 'Baron_mouse')-(12-16 18.13.20)\\figs\n" ] } ], "source": [ "from came import load_example_data\n", "\n", "example_data_dict = load_example_data()\n", "print(example_data_dict.keys())\n", "\n", "adatas = example_data_dict['adatas']\n", "dsnames = example_data_dict['dataset_names']\n", "\n", "adata_raw1, adata_raw2 = adatas\n", "key_class1 = key_class2 = example_data_dict['key_class']\n", "\n", "df_varmap_1v1 = example_data_dict['varmap_1v1'] # set as None if NOT cross species\n", "\n", "# setting directory for results\n", "time_tag = came.make_nowtime_tag()\n", "resdir = ROOT /'_temp' / f'{dsnames}-{time_tag}'\n", "figdir = resdir / 'figs'\n", "came.check_dirs(figdir) # check and make the directory" ] }, { "cell_type": "markdown", "id": "b134821e", "metadata": {}, "source": [ "### 0.2 Load your own datasets\n", "\n", "To load your own datasets, see the code example below:\n", "\n", "```python\n", "# ========= customized paths ==========\n", "\n", "dsnames = ('Baron_human', 'Baron_mouse') # the dataset names, set by user\n", "dsn1, dsn2 = dsnames\n", "\n", "path_rawdata1 = CAME_ROOT / 'came/sample_data/raw-Baron_human.h5ad'\n", "path_rawdata2 = CAME_ROOT / 'came/sample_data/raw-Baron_mouse.h5ad'\n", "path_varmap_1v1 = CAME_ROOT / f'came/sample_data/gene_matches_1v1_human2mouse.csv'\n", "```\n", "\n", "Load scRNA-seq datasets.\n", "\n", "```python\n", "# ========= load data =========\n", "df_varmap = pd.read_csv(path_varmap)\n", "df_varmap_1v1 = pd.read_csv(path_varmap_1v1) if path_varmap_1v1 else came.pp.take_1v1_matches(df_varmap)\n", "\n", "adata_raw1 = sc.read_h5ad(path_rawdata1)\n", "adata_raw2 = sc.read_h5ad(path_rawdata2)\n", "adatas = [adata_raw1, adata_raw2]\n", "```\n", "\n", "Sepcifiy the column names of the cell-type labels, where `key_class1` is for reference data, and `key_class2` is for query data. If there aren't any cell-type or clustering labels for the query cells, you can set `key_class=None`.\n", "\n", "```python\n", "key_class1 = 'cell_ontology_class' # set by user\n", "key_class2 = 'cell_ontology_class' # set by user\n", "```\n", "\n", "Setting directory for results\n", "\n", "```python\n", "time_tag = came.make_nowtime_tag()\n", "resdir = ROOT /'_temp' / f'{dsnames}-{time_tag}' # set by user\n", "figdir = resdir / 'figs'\n", "came.check_dirs(figdir) # check and make the directory\n", "```" ] }, { "cell_type": "markdown", "id": "14ef61ed", "metadata": {}, "source": [ "Filtering genes (a preprocessing step, optional)\n", "\n", "```python\n", "sc.pp.filter_genes(adata_raw1, min_cells=3)\n", "sc.pp.filter_genes(adata_raw2, min_cells=3)\n", "```" ] }, { "cell_type": "markdown", "id": "6b9aa256", "metadata": {}, "source": [ "### 0.3 Inspect the compositions of different classes" ] }, { "cell_type": "code", "execution_count": 4, "id": "9242f5e1", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
cell_ontology_classcell_ontology_class
B cellNaN10.0
Schwann cell13.06.0
T cell7.07.0
endothelial cell252.0139.0
leukocyteNaN8.0
macrophage55.036.0
mast cell25.0NaN
pancreatic A cell2326.0191.0
pancreatic D cell601.0218.0
pancreatic PP cell255.041.0
pancreatic acinar cell958.0NaN
pancreatic ductal cell1077.0275.0
pancreatic epsilon cell18.0NaN
pancreatic stellate cell457.061.0
type B pancreatic cell2525.0894.0
\n", "
" ], "text/plain": [ " cell_ontology_class cell_ontology_class\n", "B cell NaN 10.0\n", "Schwann cell 13.0 6.0\n", "T cell 7.0 7.0\n", "endothelial cell 252.0 139.0\n", "leukocyte NaN 8.0\n", "macrophage 55.0 36.0\n", "mast cell 25.0 NaN\n", "pancreatic A cell 2326.0 191.0\n", "pancreatic D cell 601.0 218.0\n", "pancreatic PP cell 255.0 41.0\n", "pancreatic acinar cell 958.0 NaN\n", "pancreatic ductal cell 1077.0 275.0\n", "pancreatic epsilon cell 18.0 NaN\n", "pancreatic stellate cell 457.0 61.0\n", "type B pancreatic cell 2525.0 894.0" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Inspect classes\n", "if key_class2 is not None:\n", " group_counts_ori = pd.concat([\n", " pd.value_counts(adata_raw1.obs[key_class1]),\n", " pd.value_counts(adata_raw2.obs[key_class2]),\n", " ], axis=1)\n", "else:\n", " group_counts_ori = pd.value_counts(adata_raw1.obs[key_class1])\n", "\n", " \n", "group_counts_ori" ] }, { "cell_type": "markdown", "id": "f5b6bb83", "metadata": {}, "source": [ "## 1 The default pipeline of CAME\n", "\n", "Parameter setting:" ] }, { "cell_type": "code", "execution_count": 5, "id": "42023df1", "metadata": {}, "outputs": [], "source": [ "# the numer of training epochs \n", "# (a recommended setting is 200-400 for whole-graph training, and 80-200 for sub-graph training)\n", "n_epochs = 300\n", "\n", "# the training batch size\n", "# When the GPU memory is limited, set 1024 or more if possible.\n", "batch_size = None\n", "\n", "# the number of epochs to skip for checkpoint backup\n", "n_pass = 100\n", "\n", "# whether to use the single-cell networks\n", "use_scnets = True\n", "\n", "# node genes, use both the DEGs and HVGs by default\n", "node_source = 'deg,hvg'\n", "ntop_deg = 50" ] }, { "cell_type": "code", "execution_count": 6, "id": "c625e599", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[leiden] Time used: 0.2753 s\n", "650 genes before taking unique\n", "taking total of 494 unique differential expressed genes\n", "450 genes before taking unique\n", "taking total of 369 unique differential expressed genes\n", "already exists:\n", "\t_temp\\('Baron_human', 'Baron_mouse')-(12-16 18.13.20)\\figs\n", "already exists:\n", "\t_temp\\('Baron_human', 'Baron_mouse')-(12-16 18.13.20)\n", "[*] Setting dataset names:\n", "\t0-->Baron_human\n", "\t1-->Baron_mouse\n", "[*] Setting aligned features for observation nodes (self._features)\n", "[*] Setting observation-by-variable adjacent matrices (`self._ov_adjs`) for making merged graph adjacent matrix of observation and variable nodes\n", "-------------------- Summary of the DGL-Heterograph --------------------\n", "Graph(num_nodes={'cell': 10455, 'gene': 3343},\n", " num_edges={('cell', 'express', 'gene'): 4257363, ('cell', 'self_loop_cell', 'cell'): 10455, ('cell', 'similar_to', 'cell'): 65800, ('gene', 'expressed_by', 'cell'): 4257363, ('gene', 'self_loop_gene', 'gene'): 3343},\n", " metagraph=[('cell', 'gene', 'express'), ('cell', 'cell', 'self_loop_cell'), ('cell', 'cell', 'similar_to'), ('gene', 'cell', 'expressed_by'), ('gene', 'gene', 'self_loop_gene')])\n", "self-loops for observation-nodes: True\n", "self-loops for variable-nodes: True\n", "AlignedDataPair with 10455 obs- and 3343 var-nodes\n", "n_obs1 (Baron_human): 8569\n", "n_obs2 (Baron_mouse): 1886\n", "Dimensions of the obs-node-features: 702\n", "a new directory made:\n", "\t_temp\\('Baron_human', 'Baron_mouse')-(12-16 18.13.20)\\_models\n", "main directory: _temp\\('Baron_human', 'Baron_mouse')-(12-16 18.13.20)\n", "model directory: _temp\\('Baron_human', 'Baron_mouse')-(12-16 18.13.20)\\_models\n", "============== start training (device='cuda') ==============\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "C:\\Users\\Administrator\\AppData\\Roaming\\Python\\Python38\\site-packages\\torch\\nn\\modules\\container.py:552: UserWarning: Setting attributes on ParameterDict is not supported.\n", " warnings.warn(\"Setting attributes on ParameterDict is not supported.\")\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 0000 | Train Acc: 0.1117 | Test: 0.0021 (max=0.0021) | AMI=0.0075 | Time: 0.4064\n", "Epoch 0005 | Train Acc: 0.4159 | Test: 0.2519 (max=0.2519) | AMI=0.2858 | Time: 0.1625\n", "Epoch 0010 | Train Acc: 0.3867 | Test: 0.5403 (max=0.5403) | AMI=0.1705 | Time: 0.1396\n", "Epoch 0015 | Train Acc: 0.7065 | Test: 0.4592 (max=0.6013) | AMI=0.3634 | Time: 0.1313\n", "Epoch 0020 | Train Acc: 0.7971 | Test: 0.6092 (max=0.6310) | AMI=0.4382 | Time: 0.1269\n", "Epoch 0025 | Train Acc: 0.8147 | Test: 0.7386 (max=0.7386) | AMI=0.5266 | Time: 0.1244\n", "Epoch 0030 | Train Acc: 0.8661 | Test: 0.7476 (max=0.7476) | AMI=0.5507 | Time: 0.1229\n", "Epoch 0035 | Train Acc: 0.8759 | Test: 0.7359 (max=0.7720) | AMI=0.5480 | Time: 0.1218\n", "Epoch 0040 | Train Acc: 0.9209 | Test: 0.7736 (max=0.7736) | AMI=0.5692 | Time: 0.1207\n", "Epoch 0045 | Train Acc: 0.9447 | Test: 0.7667 (max=0.7842) | AMI=0.5618 | Time: 0.1200\n", "Epoch 0050 | Train Acc: 0.9632 | Test: 0.8033 (max=0.8043) | AMI=0.6154 | Time: 0.1194\n", "Epoch 0055 | Train Acc: 0.9725 | Test: 0.7789 (max=0.8420) | AMI=0.6129 | Time: 0.1189\n", "Epoch 0060 | Train Acc: 0.9748 | Test: 0.8028 (max=0.8537) | AMI=0.6226 | Time: 0.1185\n", "Epoch 0065 | Train Acc: 0.9757 | Test: 0.8441 (max=0.8600) | AMI=0.6777 | Time: 0.1182\n", "Epoch 0070 | Train Acc: 0.9786 | Test: 0.8452 (max=0.8802) | AMI=0.6295 | Time: 0.1180\n", "Epoch 0075 | Train Acc: 0.9800 | Test: 0.8834 (max=0.8834) | AMI=0.6664 | Time: 0.1178\n", "Epoch 0080 | Train Acc: 0.9823 | Test: 0.8621 (max=0.8834) | AMI=0.6479 | Time: 0.1176\n", "Epoch 0085 | Train Acc: 0.9828 | Test: 0.8706 (max=0.8834) | AMI=0.6571 | Time: 0.1175\n", "Epoch 0090 | Train Acc: 0.9858 | Test: 0.8621 (max=0.8834) | AMI=0.6353 | Time: 0.1174\n", "Epoch 0095 | Train Acc: 0.9875 | Test: 0.8754 (max=0.8913) | AMI=0.6688 | Time: 0.1173\n", "[current best] model weights backup\n", "Epoch 0099 | Train Acc: 0.9876 | Test: 0.8770 (max=0.8913) | AMI=0.6630 | Time: 0.1173\n", "[current best] model weights backup\n", "Epoch 0100 | Train Acc: 0.9872 | Test: 0.8871 (max=0.8913) | AMI=0.6810 | Time: 0.1173\n", "[current best] model weights backup\n", "Epoch 0101 | Train Acc: 0.9879 | Test: 0.8913 (max=0.8913) | AMI=0.6932 | Time: 0.1174\n", "Epoch 0105 | Train Acc: 0.9874 | Test: 0.8807 (max=0.8913) | AMI=0.6850 | Time: 0.1173\n", "[current best] model weights backup\n", "Epoch 0106 | Train Acc: 0.9870 | Test: 0.8902 (max=0.8913) | AMI=0.6961 | Time: 0.1174\n", "[current best] model weights backup\n", "Epoch 0110 | Train Acc: 0.9887 | Test: 0.8945 (max=0.8945) | AMI=0.6973 | Time: 0.1174\n", "[current best] model weights backup\n", "Epoch 0114 | Train Acc: 0.9888 | Test: 0.9062 (max=0.9062) | AMI=0.7225 | Time: 0.1174\n", "Epoch 0115 | Train Acc: 0.9898 | Test: 0.8621 (max=0.9062) | AMI=0.6486 | Time: 0.1174\n", "Epoch 0120 | Train Acc: 0.9898 | Test: 0.8897 (max=0.9062) | AMI=0.6883 | Time: 0.1172\n", "Epoch 0125 | Train Acc: 0.9916 | Test: 0.8908 (max=0.9104) | AMI=0.6930 | Time: 0.1172\n", "model weights backup\n", "Epoch 0129 | Train Acc: 0.9909 | Test: 0.8765 (max=0.9104) | AMI=0.6649 | Time: 0.1171\n", "Epoch 0130 | Train Acc: 0.9916 | Test: 0.8955 (max=0.9104) | AMI=0.6903 | Time: 0.1171\n", "Epoch 0135 | Train Acc: 0.9914 | Test: 0.9062 (max=0.9104) | AMI=0.7135 | Time: 0.1170\n", "Epoch 0140 | Train Acc: 0.9926 | Test: 0.8839 (max=0.9130) | AMI=0.6769 | Time: 0.1169\n", "[current best] model weights backup\n", "Epoch 0142 | Train Acc: 0.9886 | Test: 0.8987 (max=0.9130) | AMI=0.7245 | Time: 0.1169\n", "Epoch 0145 | Train Acc: 0.9896 | Test: 0.8918 (max=0.9130) | AMI=0.6879 | Time: 0.1168\n", "[current best] model weights backup\n", "Epoch 0147 | Train Acc: 0.9929 | Test: 0.9120 (max=0.9130) | AMI=0.7280 | Time: 0.1168\n", "Epoch 0150 | Train Acc: 0.9925 | Test: 0.9003 (max=0.9130) | AMI=0.7154 | Time: 0.1167\n", "[current best] model weights backup\n", "Epoch 0155 | Train Acc: 0.9929 | Test: 0.9311 (max=0.9311) | AMI=0.7515 | Time: 0.1168\n", "Epoch 0160 | Train Acc: 0.9933 | Test: 0.9268 (max=0.9311) | AMI=0.7474 | Time: 0.1167\n", "Epoch 0165 | Train Acc: 0.9939 | Test: 0.9136 (max=0.9311) | AMI=0.7268 | Time: 0.1167\n", "Epoch 0170 | Train Acc: 0.9932 | Test: 0.9051 (max=0.9311) | AMI=0.7153 | Time: 0.1166\n", "[current best] model weights backup\n", "Epoch 0171 | Train Acc: 0.9935 | Test: 0.9290 (max=0.9311) | AMI=0.7526 | Time: 0.1166\n", "[current best] model weights backup\n", "Epoch 0172 | Train Acc: 0.9935 | Test: 0.9327 (max=0.9327) | AMI=0.7537 | Time: 0.1166\n", "Epoch 0175 | Train Acc: 0.9924 | Test: 0.9252 (max=0.9327) | AMI=0.7476 | Time: 0.1166\n", "Epoch 0180 | Train Acc: 0.9932 | Test: 0.8977 (max=0.9327) | AMI=0.7001 | Time: 0.1165\n", "[current best] model weights backup\n", "Epoch 0181 | Train Acc: 0.9937 | Test: 0.9300 (max=0.9327) | AMI=0.7598 | Time: 0.1166\n", "[current best] model weights backup\n", "Epoch 0183 | Train Acc: 0.9930 | Test: 0.9305 (max=0.9327) | AMI=0.7642 | Time: 0.1166\n", "Epoch 0185 | Train Acc: 0.9928 | Test: 0.9247 (max=0.9327) | AMI=0.7592 | Time: 0.1165\n", "Epoch 0190 | Train Acc: 0.9939 | Test: 0.9279 (max=0.9327) | AMI=0.7348 | Time: 0.1165\n", "[current best] model weights backup\n", "Epoch 0191 | Train Acc: 0.9937 | Test: 0.9417 (max=0.9417) | AMI=0.7866 | Time: 0.1165\n", "Epoch 0195 | Train Acc: 0.9946 | Test: 0.9343 (max=0.9417) | AMI=0.7492 | Time: 0.1165\n", "Epoch 0200 | Train Acc: 0.9952 | Test: 0.9464 (max=0.9464) | AMI=0.7792 | Time: 0.1165\n", "Epoch 0205 | Train Acc: 0.9950 | Test: 0.9247 (max=0.9464) | AMI=0.7457 | Time: 0.1165\n", "[current best] model weights backup\n", "Epoch 0207 | Train Acc: 0.9945 | Test: 0.9464 (max=0.9464) | AMI=0.7906 | Time: 0.1166\n", "Epoch 0210 | Train Acc: 0.9949 | Test: 0.9321 (max=0.9464) | AMI=0.7565 | Time: 0.1165\n", "model weights backup\n", "Epoch 0215 | Train Acc: 0.9954 | Test: 0.9390 (max=0.9491) | AMI=0.7636 | Time: 0.1165\n", "[current best] model weights backup\n", "Epoch 0220 | Train Acc: 0.9949 | Test: 0.9486 (max=0.9491) | AMI=0.7920 | Time: 0.1165\n", "Epoch 0225 | Train Acc: 0.9956 | Test: 0.9496 (max=0.9496) | AMI=0.7870 | Time: 0.1165\n", "[current best] model weights backup\n", "Epoch 0229 | Train Acc: 0.9954 | Test: 0.9433 (max=0.9496) | AMI=0.7942 | Time: 0.1164\n", "Epoch 0230 | Train Acc: 0.9946 | Test: 0.9343 (max=0.9496) | AMI=0.7742 | Time: 0.1164\n", "Epoch 0235 | Train Acc: 0.9945 | Test: 0.9104 (max=0.9496) | AMI=0.7167 | Time: 0.1164\n", "[current best] model weights backup\n", "Epoch 0239 | Train Acc: 0.9954 | Test: 0.9517 (max=0.9517) | AMI=0.8013 | Time: 0.1164\n", "Epoch 0240 | Train Acc: 0.9956 | Test: 0.9443 (max=0.9517) | AMI=0.7786 | Time: 0.1164\n", "Epoch 0245 | Train Acc: 0.9964 | Test: 0.9470 (max=0.9517) | AMI=0.7858 | Time: 0.1164\n", "Epoch 0250 | Train Acc: 0.9964 | Test: 0.9321 (max=0.9517) | AMI=0.7595 | Time: 0.1164\n", "[current best] model weights backup\n", "Epoch 0252 | Train Acc: 0.9967 | Test: 0.9491 (max=0.9517) | AMI=0.8026 | Time: 0.1164\n", "Epoch 0255 | Train Acc: 0.9965 | Test: 0.9422 (max=0.9517) | AMI=0.7758 | Time: 0.1164\n", "model weights backup\n", "Epoch 0258 | Train Acc: 0.9965 | Test: 0.9475 (max=0.9517) | AMI=0.7836 | Time: 0.1164\n", "Epoch 0260 | Train Acc: 0.9972 | Test: 0.9491 (max=0.9517) | AMI=0.7829 | Time: 0.1164\n", "Epoch 0265 | Train Acc: 0.9973 | Test: 0.9480 (max=0.9517) | AMI=0.7765 | Time: 0.1164\n", "Epoch 0270 | Train Acc: 0.9968 | Test: 0.9470 (max=0.9517) | AMI=0.7744 | Time: 0.1163\n", "[current best] model weights backup\n", "Epoch 0274 | Train Acc: 0.9963 | Test: 0.9571 (max=0.9571) | AMI=0.8026 | Time: 0.1163\n", "Epoch 0275 | Train Acc: 0.9974 | Test: 0.9517 (max=0.9571) | AMI=0.7910 | Time: 0.1163\n", "Epoch 0280 | Train Acc: 0.9972 | Test: 0.9533 (max=0.9571) | AMI=0.7987 | Time: 0.1163\n", "Epoch 0285 | Train Acc: 0.9960 | Test: 0.9517 (max=0.9571) | AMI=0.7967 | Time: 0.1163\n", "Epoch 0290 | Train Acc: 0.9967 | Test: 0.9396 (max=0.9571) | AMI=0.7713 | Time: 0.1163\n", "[current best] model weights backup\n", "Epoch 0291 | Train Acc: 0.9971 | Test: 0.9496 (max=0.9571) | AMI=0.8040 | Time: 0.1163\n", "Epoch 0295 | Train Acc: 0.9972 | Test: 0.9459 (max=0.9571) | AMI=0.8006 | Time: 0.1162\n", "figure has been saved into:\n", "\t_temp\\('Baron_human', 'Baron_mouse')-(12-16 18.13.20)\\figs\\cluster_index.png\n", "states loaded from: _temp\\('Baron_human', 'Baron_mouse')-(12-16 18.13.20)\\_models\\weights_epoch291.pt\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "C:\\Users\\Administrator\\AppData\\Roaming\\Python\\Python38\\site-packages\\torch\\nn\\modules\\container.py:552: UserWarning: Setting attributes on ParameterDict is not supported.\n", " warnings.warn(\"Setting attributes on ParameterDict is not supported.\")\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "object saved into:\n", "\t _temp\\('Baron_human', 'Baron_mouse')-(12-16 18.13.20)\\datapair_init.pickle\n", "Re-order the rows\n", "figure has been saved into:\n", "\t_temp\\('Baron_human', 'Baron_mouse')-(12-16 18.13.20)\\figs\\contingency_matrix(acc95.0%).png\n", "figure has been saved into:\n", "\t_temp\\('Baron_human', 'Baron_mouse')-(12-16 18.13.20)\\figs\\contingency_matrix-train.png\n", "figure has been saved into:\n", "\t_temp\\('Baron_human', 'Baron_mouse')-(12-16 18.13.20)\\figs\\heatmap_probas.pdf\n" ] } ], "source": [ "came_inputs, (adata1, adata2) = pipeline.preprocess_aligned(\n", " adatas,\n", " key_class=key_class1,\n", " use_scnets=use_scnets,\n", " ntop_deg=ntop_deg,\n", " node_source=node_source,\n", " df_varmap_1v1=df_varmap_1v1, # set as None if NOT cross species\n", ")\n", "\n", "outputs = pipeline.main_for_aligned(\n", " **came_inputs,\n", " dataset_names=dsnames,\n", " key_class1=key_class1,\n", " key_class2=key_class2,\n", " do_normalize=True,\n", " n_epochs=n_epochs,\n", " resdir=resdir,\n", " n_pass=n_pass,\n", " batch_size=batch_size,\n", " plot_results=True,\n", ")\n", "dpair = outputs['dpair']\n", "trainer = outputs['trainer']\n", "h_dict = outputs['h_dict']\n", "out_cell = outputs['out_cell']\n", "predictor = outputs['predictor']\n", "\n", "obs_ids1, obs_ids2 = dpair.obs_ids1, dpair.obs_ids2\n", "obs = dpair.obs\n", "classes = predictor.classes" ] }, { "cell_type": "markdown", "id": "7bf81d22", "metadata": {}, "source": [ "### Load other checkpoint (optional)\n", "\n", "You can load other model checkpoint if the default model is not satisfying.\n", "\n", "For example, load the last checkpoint and compute the results of it:\n", "\n", "```python\n", "outputs = pipeline.gather_came_results(\n", " dpair,\n", " trainer,\n", " classes=classes,\n", " keys=(key_class1, key_class2),\n", " keys_compare=(key_class1, key_class2),\n", " resdir=resdir,\n", " checkpoint='last',\n", " batch_size=None,\n", ")\n", "```\n", "\n", "You can get all saved checkpoint numbers by:" ] }, { "cell_type": "code", "execution_count": 7, "id": "0e00e166", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "[100,\n", " 101,\n", " 106,\n", " 110,\n", " 114,\n", " 129,\n", " 142,\n", " 147,\n", " 155,\n", " 171,\n", " 172,\n", " 181,\n", " 183,\n", " 191,\n", " 207,\n", " 215,\n", " 220,\n", " 229,\n", " 239,\n", " 252,\n", " 258,\n", " 274,\n", " 291,\n", " 299,\n", " 99]" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "came.get_checkpoint_list(resdir / '_models')" ] }, { "cell_type": "markdown", "id": "c3d002d7", "metadata": {}, "source": [ "### Plot the contingency matrix for query dataset" ] }, { "cell_type": "code", "execution_count": 8, "id": "0d3c6693", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "figure has been saved into:\n", "\t_temp\\('Baron_human', 'Baron_mouse')-(12-16 18.13.20)\\figs\\contingency_mat.png\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXsAAAEiCAYAAAAYv3I0AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAxOAAAMTgF/d4wjAABf/klEQVR4nO2dZ5QcxdWGn3dXK5EkgkBkEEGAAJGTSBZRZEQ2OWOyAWNssDEyho9gchZR5Awmg0kSMtEChISJJtkYMBjbZAyS7vfj3mZ7Zyft7myu55w+M9Ohurqn+1bVrVtvycxIJBKJRM+mrrMzkEgkEon2Jxn7RCKR6AUkY59IJBK9gGTsE4lEoheQjH0ikUj0ApKxTyQSiV5An87OQKLjqa+bqSbxtt9Nvb8WySQSbed//6tZUvUzjlTNEutCpJp9IpFI9AKSsU8kEoleQDL2iUQi0QtIxj6RSCR6AT3a2Et6PPd9UivTGCFpXFvPX2afdyUNbk36uTTGStpL0mBJ77YlrUQi0TPp0cYeGJF9MbMVOvP8iUQi0Zm02thnNV5J90t6TdINkmaIbYdKekbSFEnPSxoa69+VdGJse1PSJrF+AUkPSXpZ0p8lrRy11DckTZD0hKQ6SadJekHSZEnHx7F9JF0m6WlJb0n6g6SZJF0Y2yfGp8XnrJJulvSqpJckjSxybRtL+kscu39u/ThJI+L7D7XoEvkvPH/Re1Lm/p4o6XVJr0g6JtYtIunBuAdPS1qztf9fIpHoXbS1Zr86cCQwFGgADpU0ANgWWM/MhgF3AwfnjvnMzNYAjgFOjnUXAPeY2bLA0cCJsX4IsLeZrQvsA/Q1s5WAlYHhkjYH1gSmmtlwYHGgP7CpmR0CYGarFOT5t8DfzWwosB1wan6jpH7ANcBOcexXVdyHZvnPn7+Ke9IESaOA9YHlgZWA7SUtAlwNHBf3YDfgOkkVx0pIOkrS+9li9n0Vl5RIJHoSbR1U9YSZvQ4g6VrgADM7Q9KuwM6SlgBGApNyx9wXn5OAOeL7BsAeAGY2HhgffuxPzOyvsc8mwIqS1ovfMwPDzOxUSf+VdAhe6CwFzFImzxsAu8a5/gqsWLB9GPCBmb0cv68FflfhPjTLf36jmX1e4Z4US+8WM/s2fq8maRZgDeBK6YcxH32BBSvkDTM7Czgr+12rQVWJRKL70Naa/dSCtKZJWgh4Gq9h3w+MBfIj0jIDZrn1+XSQNCy+fp1bXQ8cY2YrhP99DeC8qAVfh9fArwSeKDhfsTz/YOwkDZVUn9uez1dh3vLbGkrsk89/9rvSPamUx8H49X+bXX/cg9WB98qkk0gkEkDbjf3akuaXVIfXbP8IrAK8YWbnAn8GRuGGqhzjgB8DSFoHd1cU8hhwgKQGSTMBjwIb4e6Om81sLPAfvFM0O9+0Im6OccDOca7FgIdpaninAIMkrRS/d8lt+xRYLr5vU0X+s/O39J6MA7aT1Df6Qe4BBgNvStozzrM28DxJ8iKRSFRBW439B3gt9VXgI2AMbvAl6R3gBeB1YNEK6RwGbCMPjzwd2LPIPpcAr+HujxeBu8zsLuAyYBdJrwG3AU/mzncHMFnSzLl0RgOLSnoJuBXYzcx+qJmb2Xd4YTBW0gvAjLljTwN+IulFoF8V+b8DmIwXTFXfk7iu8bgxfx641Mxewt1Pe0maDJwPbB/5TSQSibKotXPQRlTKaDMbUcP8JDqAJISW6HEkIbSK9PQ4+0QikUjQhpp9ovsybfq4mvzpDX2aDVFoFd9Pfagm6XQ5pk+vTTp1qU7WkdTXjUg1+0QikUh0T5KxTyQSiV5AMvaJRCLRC0jGPpFIJHoBLTb2ISR2Z3tkJncOkzQplr9IukPS7O15zvYghMuuiO+rSLq8nc4zWtLo+J563BOJRDNaU7OfneZ6MjUnJwuwDPA+8Mv2Pmc7sDCwGICZTTSz/To5P4lEopfSGmN/ITCfpLujRnl6tkHSBZL2lU+mcXHI/eaH+BeVKS5H6Nb0x0foFm4bLelqNcob/zLWl5I9HiyXNb4qPp8NNUkkrRv5miLpAUlzyCcEGRd5PUPSnJJukzRRLlO8ZRw7fxzzjFzG+aTcvVpF0iXKTYIiaRlJT0a6E7I8FFzbwXIZ5lcknS2n6PkTiUSiEq0x9ofgqpBbAVfhSo51kvoCWwG3xH6L4fLD6wG/lzQfpWWKm5G5cXBJhg2AG0vkZ0VcI2clYH9Jq1BC9jj2HwZcaGbLA8/gssx9gZuAfUKC+EnggNh/IWBlMzsaOAe4LqSPRwJnSxqEyyvcEtLNywKHSZoz7tVEMzuwIM/XA6eY2XK43MPPC659RVw6enikNwRYp8z5y6ICieOzz76l0iGJRKKH0SYRLTN7T9LruDEeADxuZl/IJXivMhdOf1/Sn3ADXFSmmEbZ43zaK4C3BoAzcGO/XuF+wI1m9mXsexcwImSWS8kef2xmE+P7JGDdyMNHZjYpzn1SpLcXbqwzAfhNgGGZfxxXvlwKOBPYUNLPcePcL66tGZIGAguZ2b1xrmtw/fw86+P6+P+N31vEsXeUOH9ZCiWOazWoKpFIdB9qoZh4Ja4MOStwXm59M/ljGmWKb4cfDN835RI3s+mSrgZ+UmKXYjLLo/AJUM6K/A2kUdny29z+mWRxoaRwfxq19gtlltc3s09jv3mBT+I8g/Ea+5144VdqFF7hufoCi2TzApTYZ77Id6nzr1/iXIlEIgG0zo0zlaaFxB24i2EJmk7asWP4mRfGtef/RGmZ4kpsgKs/FmMbSf3k0TpbAY9QXva4GK8Dc0laJn4fAfy0yH6PAYcCSBoC/AUvFDYAzjCz23CXy3xxvsJ7hZl9BvxN0saxaifglILzPAFsJql/tGzGAmuXOX8ikUiUpTU1+w+BdyVNMLN1zOxbSROAd6yp0M6MuHb7jMCBZvaJpEtwH/qkOPdNIefbjPDXg9dwP6PRh17I18AEvGVxmplNkXQZcJOk3fFJTTLZ40eLJRDXsAtwlXxawndwff5tC3Y9DBgjaQpec9/XzD6WdEqc7wvgb8DEON/zwKySbsTlnzN2Ay6Wd25/SoGks5m9KOlc4Cm8QL7bzO6Wz2db7Pwlbk0ikUg4bRZCk2vFPw1sYWZ/i3VjgXFRs243Mt+1mY1uz/P0NJIQWgeRhNC6JUkIrQiSVsdrstdmhj6RSCQSXY8kcdwL6WrROH3qq+m2qczUaQ/XJJ1E7ybV7BOJRCLRbUnGPpFIJHoBydgnEolELyAZ+0QikegFJGPfgUi6PDR/XpH0nRplnA9pY7oWnz9IHScSiUSeWsglJKokkziWNBgfh7BCp2YokUj0GlLNvgsiaQFJD0l6WS4TvXKs3znkjSdJuj40fBKJRKIiydh3TS7AVS+XBY4GTpS0FHAwsHa0CF4BflNNYkniOJFIJDdO12QDXJsHMxsPjJd0KC4290xo4TQAb1WTWJI4TiQSydh3TfKyzUgahqto3mJmh8W6mXHd/EQikahIcuN0TcYBPwaQtA5wdazbRtI8sc/ZQMVpHROJRAJSzb6rchhwmaSD8cld9gzp5hOAR+R+nFeBozozk4lEovuQhNB6IV3NZ5+E0BJdiY4UQouIuqeALc3s3YJtKwCX41O+TsDnBfle0kLAdcAg4A1gVzP7otK5khsnkUgkOoGQiJ8ALFlil+uAn5rZEvH7wPi8CBhjZkvhE0SNruZ8ydgnEolE53Ag7rL9oHBDTOc6k5k9GavGAttLagDWBW7Jr6/mZMlnn2g9NZqJqVbul759NqtJOt9Nvb8m6TB1auV9qqFPek27MlJDEbfo1J/RtE/trAiB/gEz29uPL+o1mo+mhcCHwLzAnMDnZvZ9wfqKpKcokUgk2oDU3EEyfXrTsS2toA6ff/uH0wDTi6wn1lckGftEIpFoA+5ZqTnv07TGPg9e0/8YmFVSHzObGvs0cwMVI/nsE4lEog1I/ZotbcXM3gO+jXE2AHsBD4T7ZgIxDidbX02aydi3EkmP575PauGxB0iaJmmRGuUlSRwnEp1EfV3fZktrkXS/pFXi567AWZJeA2YEzov1BwP7SXoFWAv4dTVpJzdO6xmRfWmFVPE+wO3AAcCxtctSIpHoaKS2mVEzG5z7vlnu+0vAqkX2f4+c/amWLlmzlzRC0rgo5V6TdIOkGWLboZKekTRF0vOShsb6dyWdGNvelLRJrG8mFyxpsKQ3JE2Q9ISkOkmnSXpB0mRJx8exfSRdJulpSW9J+oOkmSRdGNsnxmdWs55V0s2SXpX0kqSRRa5tKLAw8DtgH0nNqgFJ4jiR6D7UsmbfnnRJYx+sDhwJDMUVHg+VNADYFljPzIYBd+NNmozPzGwN4Bjg5FjXTC441g8B9jazdfGadl8zWwlYGRguaXNgTWCqmQ0HFgf6A5ua2SEAZpY1tzJ+C/zdzIYC2wGnFrmufYFbzWwK3tmyTZF9aipxnEgk2o/6un7Nlq5IVzb2T5jZ6+Z6DtcCI8zsc9yPtbOkU4FRwCy5Y+6Lz0nAHPF9A+AacLlgM9s81n9iZn+N75sAW4Xv/c94QTDMzJ4ALo5pA88Hlio4XyH5c/3VzFbMb5S393YDboxVN9I4Kq5UOlmeN6RR4ngSsAulR941IenZJxLtR5+6vs2WrkhX9tnnR6TUAdNCE+IJXPHxfnxAQd6gfhufhselFqaTyQV/AXydW10PHGNmt8c+A4FvJI3CWwJnAVcCA3PplsrzDzGw4bJ5w8ymxaotIo0bYyBFH2A+SUuZ2Wslrr3NEsdJzz6RaD+6ak2+kK5cs19b0vzyEQt7AH8EVsGN57l4DXwUbgTLMY7mcsGFPAYcIKlB0kzAo8BGwPrAzWY2FvgP3imSnW+amvfMjAN2jnMtBjxM08JhH2C0mQ2OZQG8NfKTKvI8jiRxnEh0OerU0GzpinTlmv0HuO7DQrjxHQPMABwk6R28Fj8eGFYhnWZywUX2uQT3yU/C78lNZnaXpLeBmyTtDnwFPAksGsfcAUyWlO8tHw2MkfQSMA3YLQY+IGlu3D2zf8G5fw/8QdJxZvZNqTwnieNEomvSpwZx9R1Bl5Q4ljQCrwGP6Nyc9Exq5sapkTYOdbVpYCZtnEQtaKnE8cJzbNbsfXrv3/d3mExytaSnKJFIJNpAn24yO2iXNPZmNo5WDBpIJBKJjqbBhwB1ebqksU90E2rkfqkVtXK/pJmzEi2h3rqHGe0euUwkEokuSkNy4yQSiUTPp8G65iCqQpKxTyQSiTbQYF0zrr6QruV07QAykbUK+2wh6aj43iLZ4BBZeze+nyhpqwr7tzkMMkTjRlRzbYlEorb0pU+zpRok7SLplRBuPLRg2yoheJgtf5f099g2UtK/ctuuquZ8qWZfnEKBs1ZhZkmoLJHo4dRXHMTfHEnzA6cAK+EDRJ+SND4EEjGzicAKse8MwLO4wCPAasDJZnZ2S87ZLWv2Iez1fMgInx9SxIPj91Xx+axichBJG0v6S0gS759LZ4ikx0LW+GlJq4YOzYHAgZL2i11XlfSUpHckXVwuHwX5HCtpr/h+slx++bWoic9DCST1lXSxpNflMsd7xPoVJY2XSzE/FkqYiUSiE2lQfbOlCjYEHjWzT83sK+A2YPsS+x4NPG9mD8XvVYEtwm7dJWmBak7Y7Yy9pA1x6eHV8JKvH43aMsOAC81seeAZXBa5H64guVNIEn+VS+464GIzWw6XU74VeAOXT7jEzC6P/ebFpQ6WxtUxl6mQj8I8Lx7HrmlmSwHv4OqdpTgYV+0cCvwI+IWkWXExtj1Civl4XA00kUh0Ig2qa7ZUwXw0nTv2Q5rOOQuAfM6Kw2iqg/Uf4NywW/cBN1Rzwm5n7HE54tWB54EXgXVxQwrwcTR/oFHmeBjwgZm9HOuvBZA0C7CEmd0KYGbP4DexmGzwA2b2TWjX/BWYs0I+mhBSykcD+0s6C1ibylLJ15vZ9Cj5lwEWxCWO75JLHF+IK2ZWDAVQkjhOJNqNYsa+8J3L+gBz1JFTyMUFE4vpj+yK259/ZCvMbE8zuzu+XwoMi8pgWbqjz74eOMfMzgSfHQq/aXPQKHEMjTLHebljaJQPLlbQCZ8opZDvi6RbLh9NE3WxtBtx0bNbIw8tkUoeEud7O5sCMcTQ5jez7/xraZLEcSLRfjTUNX//Ct+5IrwPrJP7PQ9Na/oZ2wBnZj+icvdzMzs5fgu3ZRWFmLpjzf4xYA9J/SXVAzcBe5fZfwowSNJK8XsXgJgI5S1JOwBIWgNvWr2M37hKBWFL8rEO8LiZjcHdRJtTXpp5HLCTnIFxro+A2eUicdl13FMhj4lEop2pl5otVfAIsKGkQfK5KXYAHszvEIZ8VeBP2Toz+w7YVT7XBsBewDPh9y9Lt6vZm9k9kpbDffL1uGG8ECjaSRE1352BsZKmAi/kNu8GXCLpN8B3wPZm9j9JjwPXSfq0Rvm4GbhT0pt462MijVLJxbgYnxXrpfh9lJn9MwqmcyTNiPc9lPP7JxKJDqBPkZp9JczsH5KOAx7HvQmXm9lzku4HfhPu6LmA78zs64LDd8Ht1v8B/8Tn+6hIl5Q4TrQvyY1TnqSN07tpqcTxvvP9ttn7dMUHJySJ40QikehJNHQTZ3gy9olEItEGWuPG6QySse+N1GqGqa8q9glVR//+tUnnf/+rSTK1cr/MNENtulS+/vb6mqSTaB9SzT6RSCR6AfXdo2KfjH0ikUi0hVSzTyQSiV5An+ri6judZOwTiUSiDTTUdY9I5m7SAOk6xICr7PukFhw3TtJf5frTU0Itc8ca5cnis0Xa+4lEou001DVfuiKpZt9yRmRfMp2aFrCfmY0DkLQoMEHSv8zssZrlLpFIdCjdpYO2S5VBipmWJN0fuu83yIX7kXRo6MFnteKhsf5d+YxQz8hnfNkk1i8g6aHQg/+zpJXlmvdvSJog6QlJdZJOC334yZKOj2P7SLpMrnH/lqQ/SJpJ0oWxfWJ8ZjXqWSXdLOlVubb9yErXamZvA+cBhxS5D83yHut3ljQxWgfXh/xpIpHoRLpLzb4rZmt1XFt+KK4ZcaikAcC2wHpmNgy4G9d8z/jMzNbAZ3I5OdZdANxjZsvi8sInxvohwN5mti6wD9A39OFXBoZL2hzXqZ9qZsOBxYH+wKZmdghA6OLn+S3wdzMbCmwHnFrltU6J6yykWd7lE5UcDKwdLYpXgKpmwmoucXxrldlLJBKVaJA1W7oiXdGN84SZvQ4g6VrgADM7Q9KuwM6SlgBG4nr1GffF5yQaJYY3IASCzGw8MF7SYOCT0JcH16RfUdJ68XtmYJiZnSrpv5IOwY3xUlTWn981zvVXYMUqr9WAQpGjUnk/FNezfyYkjRuAt6o6SaHE8dTHuubTmEh0Q7pqTb6Qrmjs87rMdcA0SQsBTwBnA/fjs7rkDWqmY5/Xrm+i7yyfbvALmhrXeuAYM7s99hkIfBPyoSfiBvJKYCAt058fCrxhZtMqXOuKwF9KpFeY93rgFjM7LNbNjM+OlUgkOpE+XbQmX0hXLJPWljS/pDq8dvtHfALwN8zsXODPwCjK68GDSw7/GEDSOsDVRfZ5DDhAUoOkmYBHgY2A9YGbzWwsPnvViNz5pqlgrtk4185xrsWAhylfOBBumYNwWeRq8j4O2EaNc9eeTdOpyhKJRCfQR82XrkhXrNl/AIwFFsKN7xhgBuAgSe/gtfjx+HSD5TgMuEzSwcA3wJ5F9rkE98lPwu/FTWZ2l6S3gZsk7Y7rxj9Jo/78HcBk+exTGaOBMZJeAqYBu5lZsZljLpf0Jd4K+A44zMyeqybvZjZF0gnAI3I/zqtA4VRniUSig2ltnL2kXYBf4y7Zc83sgoLtPwFOAD6OVfeZ2a/C03EdMAifDGlXM/ui4vm6kp69fBam0WY2onNz0rOpmc++hwqh0a823rEkhNY9aame/a2r/KbZ+7TDxBMrteznB54CVsIrsE/hlcQpuX2uAO41szsLjr0XuNHMro8IwtnM7GeV8tkV3TiJRCLRbeij6c2WKtgQeNTMPo0pBW8Dti/YZ1XczTxZ0jWSZpPUAKwL3BL7jC1yXPF8VrNTRxEDjkZ0cjZ6PnU1KuNrVSOvFTWqkdeKWtXIazVzFqTZs9qDVrpx5qPpBOMfAqtlP6LP8u/A74Bn8ZDy84BfAJ+b2fe54+at5oSpZp9IJBJtoI+s2VI4tkVSYf9aHbkIPjyg44cmgZlNN7PNzewZc1/76cAWRY4jf1w5krFPJBKJNtBQZ80WMzvLzBbILWcVHPY+TWvk85Cr6UuaS9Jhue31eEj2x8CsuYjAeWnaQihJMvaJRCLRBlrps38E2FDSoBgzswPwYG77F8BvMqkU4HDgznDfTCBCs4G9gAeqymc1OyUSiUSiOA11LZ/m08z+Iek44HE89PJyM3tO0v3Ab8xsoqSd8HDtGYHXaAwfPxi4Oo7/GzHGpxLJ2HcwKbw0kehZtMbYA5jZDcANBes2y31/jCLSK2b2Hq0IZEnGPpFIJNpAfZq8pGsgl01+TNK9IVf8e0m/lsskvyhpXpWWT1435I+nSHpA0hyS9pLLME+WdEb43O6O3y+oUWJ5tKSr1SiT/MtctuaM/Lwi6XFJc8QxpfIxIta9KOkiSeNi/SKSHozzPi1pzY69u4lEoqFuerOlK9LjjX2wGu7nWi4+PzGzlYHJwI4UkU+W1Be4Cdgn1j8JHBDpLQSsbGZHA+cDE8xsOXxww5WS5o79VsS1dlYC9peUSSMvDBxhZkvj2js7q4SMcwyiuA7Yw8xWxOUYMq4GjguJ5t2A64ro9hSROL6lcJdEItFK+tRPa7Z0RXqLG2eymf0NQNInuOYOwDvA7Lg8caF88jDgIzObBGBmJ8XxewETc4Ma1gd+Evu8LelZXJMffEjzl3HcXbifbWLkJ5NZngLMaWafq7iM8zDgYzN7Mfa/AjhH0izAGnjhkl1nX2DBuK4faCZxPH1c92h3JhLdgK5aky+ktxj77wp+50XKFgKeprl8cqFscX8atfILZZLzCO9dLzxPHY218u9z682TLynjXFhNyPJUD3ybnxox9DY+JJFIdBh96ruHse8tbpxylJJPfh2YS9Iysd8RwE+LHP8YsD/8MK/sOnjhAS5J3E/S7MBWeGxtS/PxKjCHXNMeYBfAzOwz4E1Je8a51waep/cU4IlEl6BPn2nNlq5IMvauly+5fPILuJFf1My+xQ3rVSFdvDIuZVzI4cCPJE0B7gL2N7NsRNvX+ACIZ4DT8op2LcjHd7g//hpJz+Numm/imF2BvSRNxvsOto/9E4lEB1FXZ82WrkiXkjjuSUgaDWBmo9uYjoDTgN+a2VeSfg7MZ2ZHtjbN5LPvXiQhtI6lpRLHH++wb7P3adCtV3S5KUxSk7+LY2Ym6d/AnyV9jyvh7dW5uUokEhn1fbqHzz4Z+3airTX6grROBU6tVXqJCnSxSVBqWRvv22ezyjtVwXdT769JOj2B+oZk7BOJRKLHU9/QPbyiydgnEolEG1B9MvaJRCLR46nr29k5qI5k7BOJRKIN1DVU3qcr0CPi7CU9nvs+qY1pLSKf1b3cPoMlvRvfx4aEQrn9r5K0cFvyVSF9i8/RWchnIpHoGNS3+VLVcdIuIYb4pqRDi2zfKAQRJ0l6NLMhkkZK+lesnyTpqmrO1yOMPTlt57x8QCtZGFisjWkUsh4uo5BIJHoYalCzpeIxLm1yCj7ifgVcKHFYbntf4Fpg57BpN+ETjoMLO55sZivEsnc1+axo7ENed5yk+yW9JukGSTPEtlKSvO9KOjG2vZmT/V1A0kOSXpb0Z0krRy35DUkTJD0hqU7SaSHbO1nS8XFsH0mXqVEy+A+SZpJ0YWyfGJ9ZLXdWSTdLelXSS5JGFrm238Q5XpE0JlZfCKwi6ZLY56i4tpcknV9MVTKX3slxza/FPZtH0q/wmeTvl8shryhpfFzfY5KWKpJOs/sU63eWNDFK8+vlej2JRKITUR81W6pgQ+BRM/vUzL4CbsNVczP6AT81szfi94u4jhfAqsAWYbvukrRANSestma/OnAkMBQX+TpUJSR5c8d8ZmZrAMcAJ8e6C4B7zGxZ4GjgxFg/BNjbzNYF9gH6hmzvysBwSZsDawJTzWw4sDjQH9jUzA4BMLNMPjjjt8DfzWwosB0FceqSZgUOxcXGhgF9o7Q9BFe1PFDShnHe1fDStx+hcFmIpMWBpYE1zWwpXHlyVzM7GZ8QeDNczvhKXK54JeB4vPQupNl9ikLhYGDtKOlfAX5TLC9F8pYkjhOJdkJ965ovBe+cpKMKDpuPphOFf0huAnIz+8LMbgaQVI9Ltdwdm/8DnBuy6vdRMNtVKartoH3CzF6PE18LHGBmZ6i4JG/GffE5iUa1yA2APeJixgPjJQ3G9eUzyd9NgBUlrRe/ZwaGmdmpkv4r6RC80FkKmKVMnjfAtWOItJtM72Vmn8n1bJ4D7gXOiHkhh+R22wQv6J6P3zPgipX3UYCZ/VXS0XhzbElgbeDdgt2WBJYA7lKjLPFckvoWaNoUu0+HxrHPxLENwFtlrj+ftyRxnEi0E2poXmcufOeKUEdOVRd38zYbnSWff/a62P+kSDubixYzuzQ8IbOGOGJJqjX2zaR6VVqSN+PbLD80+qvz6RA+qi9oLhl8jJndHvsMBL6RNApvCZyF144HUt4PXihRPBRXlcxL0mU1902Ah6LwylMPnGNmZ0Yas0aacxTsh6RVgRuB3wO3xvkL81cPvJ31K8it9vxFxMuK3ad64BYzOyzWzYy3NBKJRGfSt1DlvCrex/31GfPQtKaPXC33PuBt4Mdm9r3cl//z8BhkNqSOAptRjGrdOGtLml9SHV7j/COlJXnLMQ74cWRyHXympUIeAw6Q1CBpJnyikY3wSUJuNrOxeDNmRO5804r40scRs65LWgx4mJzxjRbFS8CLZnZ8XNNy+E3L0noM2ENS/2hK3QSU6gxZB3jczMYAbwCb5/KXpfkaMLt80nFwVc17iqQ1jub3aRwumTxP7HM27gZKJBKdiPrWN1uq4BFgw+jHmxnYAXiwYJ87gGeB3bPJkqJiuGtUfsF1sp4Jv39Zqq3ZfwCMxTsIHgXG4C6Ng+SSvN8C43HfdzkOAy6TdDAu07tnkX0uwX3ykyJ/N5nZXZLeBm6StDvwFT5N4KJxzB3A5KhdZ4wGxsjliacBu5nZD6Wfmb0r6WbgBUlfAe/FNTYAs0q60cx2lrQcLlFcjxvcC4FiHSI3A3dKejPux8Rc/u7CWz+b4X/qOdE8+4pwNVW6T2Y2RdIJwCNRmr8KFPoBE4lER9On5UGN4TI+DngctzmXm9lzku7H++Jmxyu0A4EXw3X7TzMbiVcSL5H0f8A/CZdvJSpKHEctdLSZjWjxFSW6JMlnX4EuJoRWS5IQWmVaKnFsYw9v9j5pr/O6XKh1GkGbSCQSbaFv9zCjFXNpZuPIDVpKJBKJRI6GVnXQdjjdo0hKJDqSLuh+qRVT7yw2jXLLWW7OsTVJZ9K/9qpJOp1KT6nZJxKJRKIMfVLNPpFIJHo+Dd3DjHaPXCYSiURXpW/30DjuKaqXTZC0k6QX5eJlUyT9osL+e0ka20HZqzly0bURsYzr7PwkEr2Khj7Nly5I18xVGwgxs9OBlczsU0mz4Noyr5nZXZ2cvUQi0dNINftOY058RNrMAGb2JT5S9y8AktaVywtPkfSApEznZjFJj8slmW+X1FfSPZK2jON+I2lCfO8v6W9ymskaxz4fSzpbLkn8shplisdJOlXSk3Ip6L0KLyDOfbGk1+PYPWL9iqogj5xIJDqY+vrmSxekxxl7M3sJuB14S9Jzkk4D+oQqZV9c32afkGV+EjggDh2MSxksictCbISrYW4Q29cHFgm9ng1xLZ3FKCJrHPvPBfwppJevAI7LZXNmM1sL2AY4s8hlHIyLrQ0FfgT8IkTYqpFHTiQSHUnfhuZLF6THGXuAUIZcFLgMN+JPSdoB1+75yMwmxX4nmVmmc/+Emf3LzKbjWvFz4opz64dQUX9c/ydTybwnpJMzWeOzcFnjvOxyMZnncuszNgCuN7PpMbnBMsCCNMojT8I1euaLAqwsSnr2iUT70dDQfOmC9ESf/ebALCH8fxkuKLYfrg53HE1lj/vTaGy/zyVjuG7Q+5Km4zPIPAlMwUcTjwCOUgVZYzMrJvMMIf9sZiYVldAolGceQhl55BJpNF5M0rNPJNoN69u8vtXlhHHomTX7r4H/k7Qg/GAUVwQmA6/jk4UsE/seAVQaUngf8Gtcne4xXOL4rZAULSdr3BbGATtFn8DAOO9HVCePnEgkOpJUs+8czOxxSSfic7424IXsH3Hlzv9J2gW4SlI/3Me+Bz69YinuA44FxpvZvyV9j/vyobyscVu4GJ+J66X4fZSZ/TNcUZXkkROJREfSRX30hVSUOE70PJIbp/dSd89DNUlnub0/rEk6XVEbp6USx9M+vbPZ+1Q/cJuKaUTF89d49OC5ZnZBwfYVgMuBAcAE4MCYrWohfKrCQbhHYVcz+6LS+XqiGyeRSCQ6jr59my8ViPFAp+Cu4BXwII/CyZ+uA35qZkvE7wPj8yJgTEQA/hmfqKkiydgnEolEW2idz35D4NGItvsKuA0PBAFA0sLATGb2ZKwaC2wfrul1gVvy66s5YY/z2Sc6Dn38cU3SsUGDapLO4IEn1ySddz/9VU3S6Wr3B2D6liNrks6kf9UkGfiq4tSp1THzzLVJpxXUz7BxM5eNpKNoOm3oWREVlzEfTScY/xBYrcL2efGQ8M+zOWlz6yuSjH0ikUjUmMJw5yLUkQuvxgNJplexvXA9BceVPWEikUgkOpb3aVojn4emNflS2z8GZpWUVdTnLTiuJMnYJxKJRMfzCLChpEExQn8H4MFso5m9B3wraZ1YtRfwQLhvJgA/zq+v5oTJ2BdB0uO575NacNw4SX+VNCmWv0g6OLaNkPRlrH8xBM4ekjRfG/P6gzxzCKsNbkt6iUSi/TGzf+Aj+h8HXgSuM7PnJN0vaZXYbVfgLEmvATMC58X6g4H9JL0CrIWHb1Yk+eyLMyL7kskTtID9YpJ2QgHzVUmPxbaJZvZD2pJOxYXQdm5DXhOJRDfEzG4AbihYt1nu+0vAqkWOe4+cjaqWDq/ZRw13XJRgr0m6QdIMse3QkAueIul5SUNj/buSToxtb0raJNYvELXjlyX9WdLKkgZLekPSBElPSKqTdFrIAk+WdHwc20fSZZKelvSWpD9ImknShbF9YnxafM4q6WZJr8onRakY1mBmH+GDHpYpsct4YNki92j7uAcvx/3pF3m7PO7LS6H3k0gkElXRWW6c1YEjcQnfBuBQSQNw2YL1Qn74bry5kvGZma0BHANkMXYX4OqTy+LqkyfG+iHA3ma2LrAP0DdkgVcGhodY2prAVDMbDiyOq1puamaHAIQ0cZ7fAn83s6HAdsCpVEDSSrhk8vNFtvXF9W2eKlg/T1zXpnFdX+BxtMcBL5vZypH3gyUtVykPiUQiAZ3nxnnCzF4HkHQtcICZnSFpV2BnSUsAI3EJ4IxissAb4No2mNl4fEaqwcAnIT8MLke8oqT14vfMwDAzO1XSfyUdghc6S9FUnriQDQgtmkh7xRL7XS7pS1wQ7StgfzPLfOmr5PoA+gLP4bo7edYCnjKz9+NcP4n7NBGYWY2TnQzAJZsrUhjz+/szDuLII3es5tBEItFD6CxjPzX3vQ6YFnoPTwBnA/fjgwXyBrWYXHA+HWK48Re48mVGPXCMmd0e+wwEvpE0Cm8JnIVPCjIwl26pPOdlh4cCb5jZtIL9fvDZF6GJz77K82Qzb9UDu5nZ87F+EPAZVfj7k8RxIpHoLDfO2pLml1SH18z/CKyCG89zcb2HUVSWCx5HhCBFiNLVRfZ5DDhAUoN8lqlH8Vmo1gduNrOxwH/wDo/sfNNycaz5c+0c51oMeJj2ka1+Dlgt3Dng7qId4joOkTMX8ALeIkkkEomKdFbN/gNc02Eh3PiOAWYADpL0Dl6LH09lN8Vh+OQkBwPf4HPNFnIJ7pOfhF/vTWZ2l6S3gZsk7Y67W56kUZ74DmCyfHKSjNHAGEkvAdPwWnaTlkUtMLMPJR0OPCipHi/4LsZDry7EJ1DpA5xkZpPkyniJRCJRlg6XOJZPvjG6CndGop2olRunq2m/JG2cbkgX1MZpqcRxdyENqkokEoleQIe7caLzckRHnzeRSCR6M2kEbaLV1Mq90Kd+o5qkM3XawzVJp1b0aPdLrehEaeLeRnLjJBKJRC8gGftEIpHoBSRjn0gkEr2AZOwTiUSiF5CMfQcRapzfhZ79S6GeeVmm+NnGtDNlztGSRrc5s4lEoseRjH3H8oGZrWBmywNLA4OAvTs5T4lEoheQjH3n0Q+XQPiocEMxnf5Yv7OkidE6uF5S/47OdCKR6J4kY9+xzJe5cXBVz7lwEbhCmun0S1oK1/dfO2bPegX4TTUnlXSUpPez5eyzb6nFtSQSiW5EGlTVsXyQTXMoqQGfkuwCmrtyiun0HwosATwjCVz2+K1qTpokjhOJRDL2nYSZfS/pOuD/imwuptNfD9xiZofFuplxV1AikUhUJLlxOpf1KTJlIcV1+scB2+R07s8Gjm//LCYSiZ5Aqtl3LPPFtISG19TfA/Yvsl8znX4zmyLpBOARuR/nVXJTDSYSiUQ5OlzPPtH5dDWffU8VQkt0T5KefSKRSCS6LcmNk+h0Uo28PLVq+UC6172ZVLNPJBKJXkAy9olEItELSMY+kUgkegHJ2CcSiUQvIBn7MkgaIWlcK45rN6lhSftL2rk90k4kEj2XZOy7H2uRZBISiUQLSca+CiQtIulBSS9IelrSmrF+rKS9cvtZwXF1km6UdEH8Xk3SMzF5yaOSFo/1y0h6UtJkSRPifGNjBG2W1r2SRgJb4SqYm0maU9JtIXv8vKQtO+B2JBKJbkgy9tVxNXCcma0E7AZcJ6maMQqXAP82s0ND5fIW4IiYvOQS4MbY73rgFDNbDrgM+DlwJbA7gKS5gaVwOeS7gd+Y2f3AOcB1ZrYKMBI4W9KgwkwkieNEIpEGVVVmFmA54MqQFgboCyxY4bgDgTmAxeL3EsB/zewZADO7VdKlkhYGFjKze2P9NcA1AJIGShqC1+avNzPL5QFgE2BYrn+gAS8UPs7vlCSOE4lEMvaVqQe+zXToASTNj08+YoBiXUPBcc/EcgGwdaRTaGQzy/3Dekl9gUXM7HVgLLALbux3KJG39c3s0zh2XuCTll5gIpHo+SQ3TmU+A96UtCeApLVxWeI+wKd4rR9gm4LjJgFnAItI2hF4HRgoaY1IZ0fgfTN7D/ibpI3juJ2AU+L71cBewOdm9nasm0pjIf0YcGikNwT4C96aSCQSiSakmn117ApcLOlnwDRgezP7TtLFwM2SJuOG98P8QWY2VdJPgNuBh3FDfm5MPPLf+A3eD3CxpNPxAmTPOP4fkt4Frsol+xBwuqQvcCnkMZKm4K2Efc2siQsnkUgkIEkcd2kkzQU8DSxnZl/XKt3ks+9eJCG0jiVJHCc6FEk74G6ZE2pp6BOJRO8kuXG6KGZ2K3BrZ+cjkUj0EMwsLWlptgBH9cR0umKeUjrd77/vjkvy2SeKIul9M1ugp6XTFfOU0umYdGqdVncj+ewTiUSiF5CMfSKRSPQCkrFPlOKsyrt0y3RqmVZKp3ulU+u0uhXJZ59IJBK9gFSzTyQSiV5AMvaJRCLRC0jGPtFqMk1/SfVtTGfxbCKXGuRpplqkUyskzSVplc7OR3sQKqu1SKcmM69J6l+LdHoqydj3QmImrNXbmMYcwF8lLW5m01pr8MM4Hw0cIGmxSvtXkacTJY1qYzrLSzqvLWlEOsJVSX/S1vtdKyQNktRmsZ2YUOdGSfu0MZ1ZgXHZ7G9tSGcAcIak/duSTk8mGftehqQ6YE3gIUlrtTKNOczs38C1wLOSFmmNwZe0ATAncC4wI7BXa2v4kmaLPE0FNpS0WSvTmQmf43ewpDNbk0akswQwAo/++Dfw40zeupPZHdhT0qatTUDSgsAMwBj8unZvZTqDgG/xGdzGSFq1lenMhs/tMBlYp7X56ekkY9+LiGb3XsAjwBHANaHP35I0ZgZ+Jel3ZnY8rtn/UisN/o+Ad4Ev8Ule5sQNUYsMfkwc87KkY83sl8A/gS1bavAlLQ+cDnwFnAjML+nclqSRY3HgUWA14GRcGnun1hj8aCEgacbWuqkkDZF0kJmdCbwCbCVp85bmQ9Ls+DSa2wB/Ai4F9m6pgQ3XzWHA5cDFwEXAtS01+DHZz0P4zHA3AuOBTZLBL0Jn6zWkpeMWYEvgXvzFmAvYF3gLWLuF6eyAv5zHxu9jgc/xGbYA6iscr9z30fgEMQsBS+Iv/u+AxVqYp2UjnSPi9/GR1mYtSGNA3J9z8OkdVwVuAs5tYV7q4nMUMB2fPnIAXjCeDazeyv/uD8B9wK+APi08fvHIS3Z/fh33Z/NW5GV9fH6GQ+J/2x6fz2H3FqazJvD7eJZmAA4CXgNWbWE6K+IF2BH45D374gVSi/LT05dOz0BaOvgPh+3wGtDBYfD3CYO/VhXH1uW+b4ZPjp43+J9WMtJ5Q59bdzTwBbBwGPzzgTOzwqNSelmawNJ4K+Fn8ft4vMWwVRVpZAZ61jDwFxUY/DOrvL9ZXrL0NsZr9ZuGwT8tjOzwFvxn6wETgcG4W2giMFsLju8Tn0sCXwNHx+/M4G9a7XXlfq8FjMNr55nB/yOwXwufo+Xjv74Yd+UdBEwB1mhJnvAZ414DfpYz+NfgE/p0+nvXFZYkcdwLkCSLN8LMbpf0L/ylApdRng7cKWk7M5tQJo3pkpbFpbGfwY3kZuE+OSWa5i9HR+m32TmL5SOmeVwMN/KXRh4m4y/tRfjL+mU11xUdqvXA+7hBe1XSNDP7naSTgC0kPW1mzebnzeXJ5JO/f4DPTHY5bsjOx2vkJ0o6xcyOrSI/G+BupPfxmviGuEtnE+D/gBPwmcqqZV7gGNwwroG3GI6V9LKZXVvuwMjTVEkzmdnrkpYGJsX6kyQdh7uX6i0mvS91XfF9a9zP/gmwP17gTwfuwfs6dpR0i5l9Xiat6ZJWxI3y23HsSNzoHwU0ANdJWtnMPiuXp3D79MH7RdbH7/M03ND3BTaS9KCZ/aPcfeoVdHZpk5b2XWisaW6BG9Vb8drqdsANuEtnELAfsF6FtDYDXsaN3wfAOrjhuRgYHftUdL8AR+K1wq3xCVpOyq2fDiwINFR5fVsDz+Kun0lxbUsC/wF+GfssXkU6hwEPArfhBmxmvEZ/Pu4iWhGYv4p0NsVrpqNww3NbrN+IRpdOWTdXLq1lcYO1O/Ae8DgwZ2w7B9i6yv9+Y3zy+hMifwvgBemRsf03wLJV3qMJwN5xLcvgNfxHgJ9Huv2rSGfz+N9PBd4BdgSG4/0lV+EunYWqSGdLvJVzJPAR3ge0TNz/Y4GBwAKd/Q52laXTM5CWDviT/WX/M7AE3tR+INavD9yNhwc2xLpmbpZYv3i86AvjtbApuBtoQKR/BTlDXyadAcCl8f1Q3A89B3BQrDsOWLLK61oQ7yScFfcfjwMWifQWA74HBleRzo54x95swHm4/1l4jfEPYYT6VpFOA15zHwKsi08puSA+p/BMeAFbtg+Bpi6pR4FL8EiT6+P+18f9fxNYs4o8bRSGdf24lgdj/cJhsH9e5b0egneE9g3Dfk9c2zLACvF79irSWRj3988PbAC8GM/Rgnhn9nnAMlWkM3fcj7nwoIMJ8YwuHP/929X8971p6fQMpKUD/mT4JV7j3TqM4yJhlBYCtgVWqCKN2XDf+qHAc7j/eEvgmdg+V4njCn299biL5Cm8M1Txcj5euG8VeRqMN9f3jvQWDeN2XWwvWssskqcdcb/4ocADkcdzgZ2B/pSpHRZJ6xi8YH0ar+mKKIRKHVMkzex/OhtvbVyKF5I3xe+nqKJjFY+2+3n898Nx19v8eCtuEWAosEmV1zUfcDXeOrgPN/rr0Vh4zFTlfzYjXqD/NvccbQA8F9tnqTKdOfECMP/frwTcH9sHdPZ719WW5LPvgeT8mTOY2be4wToT97XuZmbvSloGGGRmd1RIY2lgduB/wE54TWppM/ta0hDgVQAr7w9H0r64wQBvXSwDXBnnWB03irPh7pdK1zUUMOA7PK7+BGBjM3s7Bgw1hA//myL5yH8fFMd/jhv5P5nZhrFtFrzf4Qu8X6FcfkbiLq0ZgPvxQvBOM3tf0nJ4y6Nvdlx2/hJpNuAG7NdmNk7SnLib5UQz+3HsM7eZ/TN/LcXuublv/EPcXfdfYEsz+0jSjsAUM3sW799okk7BPVoX/8//iBvYkWY2T2xbFe+UJ7vXZe7RSpHONNwlNgxv5bwraQHgPUn9zKxoP00unWWAWfCa+9d4h/ca8d/vAUyPe5jmbS4gGfseRu6l2ATYVtKn+OCnXYHb4+XKfJv/K5VOpDEKD438D25QDyRi9CO+eTs8oqNkGpGnA+LY3+G+4ufwVsUR8hGPg4EdzKykoc/laRPcjz4e7z+4B3fXjJb0Rzwa4zAzm1aYj4I8HYO3AubH/egXAMPDOA8HVgZOqSI/G+AF6el4ofE4XmNeV9JTuKH/lZm9Xi6tHMIL17nj939xV9tpks7B3S7/LLyuuKbsv98Mbx30w2vjbwDPh6FfJtL+ttj9KbhHR+IFzyt4K+FI4CxJj+D/4abAbsXSKLhHW+M1+Xfw+3wS3iLbT9KMuBvw12ZW6XncLI6fgLuxLo98XSLptsjfUWb2fal0ejWd3bRIS+0XvNPsPdy3e0CsWxL4K3AH7ict6wbAa2HjgKUK1u+Bv7inAOvHupJuCbxCcTOwQW7dHHgH47zA6sC8VV7XAniH3I9y6+bFXVHH4EZkZBXpbAK8gBvDhWLdPLjL4wHct12xwzKO+z1weP4+4AZpQdx9MqTcPcodsxqwdtz3LXE30DqxbT28dn4TsGGF/IzAo5q2Izrc4z87H+9neQHYporryvpo5iy41wvj7q59qaJvBXc/PQwsV7D+cLwC8Ctg3Ur3KP6fP2X7xvrZ4/k5Kv67jSo9j715STX7nslw4Foze0hSnXzU5Vp4NM1nuH/1nQppCG8uN8APIxUPxjvhTsjvaPGGxX4zm9lX+c14C2JgbBfelF/UzD4EPmzBdX2O1zKz0EGLa93NzLaN8MFp5ZMA3K012cz+J+nDuD/X4tEpv5fUYNXXDr/FCy9wX/9U3Ch+Z2Z/znbK36M8Zmbykazn4a2COfBO2fOB2yVdgxvuHfC+hQEV8rMKcLN5iG32fq+LR1CdD3xjZn8v5gIq4BPgX8Cikv5rZlPxjtClzGzPCnnIU4+7f2aAH56jbfB+kGPyO1a4R//GXTef5f7njYCDzWxENen0dpJcQs/kHWCopMFmNt3Mvsab47OZ2T+rMPSY2ce4n3aHSOe7SHcBSf3kGjtNkLQh7pqZMZfONOAJ4FJJq8eLuBkwh1x6oSUYPtDp6NwL/R0eBpqdqygF+f0X0E/SUkB2f94kXCctMPTgPvqjJe1qHs++Oh71NEM1B0taEh/8tR7ekloAr4lPwWPq78IjjYR3ZE6ukKThHd7ghSr4ez7dzN4ws79DVQZReOz6cBr7Wt7DpSiqua66OM9/gNuBQyQtEc/R18DikmZWFfIasU8DHtG0deQN4O/4/5aohs5uWqSl9Qsx4rTI+mHAlXhTeVU8bG4K4VKoIt3MtbAhXiN8HI/EeZvS0Rsb43Hu65TYfnhsvxKPi68YXhfH1RV8LoIb94tx//wLwBYljl2f3MhXIr4dd99cFWkchg8O+iuwcIl0slDO+YgIH9yAZultiIc3Xh75qSZSJrvHI3DX2gDcDbUzcB0eYbI1XgBdjIeDLl9FuvPiraWTI8218E70oeXyUSJvqwF34v71y/GCZliJdBbH5Qr2pkA2Ax8vMBpvlf0i7nXR56jg/AsUrB+C9xVcEtf3IhXGGqSlcUnTEnZjJP0GlzvY1MxeLdi2CT7IJBOWusiKRN7kOvWG4DWu6ebulWz7wriGyZzAS2b2RJE0RuJhlEea2QWS+pg3+wsjO5bE3R7fm9kHJa5pSbxguBF4wbzWnW3ra2bfSZof73AG73h8tERkygK40NqZZvaLgjRmwI38fLg/+PTCexj7D8WN3Sex75vAGWb2bFYrNReAWxCPW5/ZzN4odm2RXn3sn0XUNODuiK9wzZzTJZ2AG7YxZjZB0lzAVKvQgZ27toVw//7reEf8aDO7v8j++f9mbtz19J9w/0w3j+ZZBO9AXwh4woq0CqOFdANemPfDDf/2Fq2I2GcGvEN3RuA9M3uywrWMxEd5H2Jm/5BUF/lZAC/EB+DP44QqXFIJSDX77r7g8fIv4uGQ0FQvZEa8E2u+wm3xO6t5bYLXuq6g5WJWI+P8F+G127VjfV7/pOoOM+AAPALlQrxGuiUlaqVl0hCNejAL4O6IfA2/b8H+RQdM4Z3azwB7xu918VGfU4BVcueqeH14h+3w+L55pDEW2AXvxD4F7xgehmsVrVF4HwvvJ16Qr05u5HPuumfBI4EWLHWPct9/jrckXsvSijxVc11L4R25u8bvwXgc/lYt/e8L7vsLxAC03HPa7F6kpQX3tbMzkJZW/GnNjfbxwEuFBr/Ui0bTCIvBYXjWBmaIdbOVMhIF6cyC+5SzqJHDw1CtGb9b/HLi+i9v462SI3F/7xTcjbRMbr+y0S3xPSvkBgEfA2fltv1gzIqlhbttJgP7FKwfhIeQ3gzMWuU11eGF2At4a+LBMPjH4oXknnG9V+Ath22rSHNzvCb9E7xFsU3+2lpwv4fj/Q6L4B3w3wMjYlsl9dK58RbPUQXrb8Nr9q19vjcGnsQ7zbNnMhn6Ni6dnoG0tPAPazRQWWx4Flp5XBj8srVgvLZ/HjGUHK/535pPH3eRnF9lfmaOz8ynfmgNDP4JwE3xfQM8guhtPOzy8SoN/WF4bfVsvPY5Vxj831eZh5/H/Vy40OjhvuwnqUIrJ3fMXHhH62TgnFg3C+6qOBf3d89MFLKF15i7v/kwxIXwSJ1ncddJi6STw6iOA47LrdsXd+dtXMXxg/A+mBuAeWLdgfE/zd2KZ3o5vKO6Hh+kdiVesPZt7bOUltx97uwMpKUVf5rX6l7Ca4aP4C6AOrzz6y1KdH4SQ9rx5v1CwO/i92R8hGa2377AaW3I36G4S+BHrTz+R/hAohF47XX/WL88JfRg8gYZ78cYj7tdJoQxWi4M7lTg5CrzcQZeS129iMF/gOpkJvLurJniP/sbjbXnmfAWzBVES6RIGgMJqV68sJ4F77TdEy/QBuMDuZ6hTK2+SAHSH3cl3Y1HEOUL7E8ib8VaPYPwUbCzxrlPwWebOg7X81m08NqrfKbfxguue/E+oo3wztjfU4U2UVoq3OPOzkBaqviToF989okX7I4w1ovi4lSX45EcCoPfLCIG7zg7C28RDAqDOgGvWS6M+8fH4LX6F6hicFKFPP880pmhmMEocUy+Zv4g7p44vIrjVsD7DupoVKtcNq7rGnxI/Y14KOPswBIV0ssXHGeGwV+Nxhrm8Li2Rau5nth/H7zQWAwvTB+jqcEvqfKId0Y+hofCZi2eh/DRyJkK5g5htIsa2IJ7uzeul7RN3LNr4r8fQk7Xv0Q6S+GVg8fxCsdW8SxegEsmrJp/Zqv831ekUbdneFzX9bg7cfPIW9n/LC1V3OfOzkBaKvxBbghuxaMqsrC/P4axPjZe2APwGOh7ci9rsRrZCLwT9Wm8lrt2GNUj4sU6HW82b1IqjRbmvawKYok8Zuqbq8d1Lhy/S9YScVfP/LH0xWvKW+AF33B8oNGruJ+9ogRvpNkn9/1MvO9gYby18BxVzvCEh2W+gxfIT+PTHa6H+9qfIwx+meOz/3MEXtvOFEuH4B2h9+I18SmUCEEtSG8U3hn/O7wWfgReibgyDOxiZf6bJfGWxO7x+zS8c34GPFLprEijYn9PQbor47X3JfDR2aviLboH4hmt2iWUljL3ubMzkJYq/iSPt54O/Cd+LxiG7fb4vS6ugbJShXSG4AOKJtM4tHydMPi/7OBrymq9G+Hx8r8t2D4QrzkeWSaNZXF3zSx47fc+vGUyRyyv4YXaJnjBUdJolDBuDbnvZ+B+8jcyQ1/smILjl8AL6hHxe+0wiPvgLpSfUWZGptw96o93oK6C9xVcgBdq/fDooCOpQioAr9FfQ2O/wJp45+zhYfAvJnzvRY5t1mGN+9YfpVFyYmE8iureyF8liYhZ49rmwsMyNyOipvBC6C+0MBIrLWWex87OQFrK/DmNtbp6fBTqdMJPjMu5/hXXhHkbVzQslkb2Ys0X6cwRL9V4YMfYth7uGqpKR76G17UB3sewGzE3asF+21JG/z0MyvW4i6MBn+TjOuDHeIflVWFsX6dAm6XEPWpW8NDU5/5bQpumCkPfB3dlvYKLfGXrd4v/soHyrZUsT5vHf3UiXrOeHXd5nI67r5aulEbu9zHxDGUFw4z4oKsnifkEyqSVdVgvQlPf/nhycsJE/0Gl/OAVmPG4jz6L5joVb42thrcgWjQ3cloqvHednYG0lPhjGl/2VXBXxHphjKbS6GbZI4zblvljiqQxKl7U13Hfbr8wOo/jIxt/SRUTT9TgmobSGJ9eh+u0H5zbPiNFWhilriuXzljc4PfFR6BeH59bxGfJQowqCh6ax+VXqrEOxPsOZgR+ivenZK2B5fGab1Hd9oJr2yD+tx1wl8bN8TzMhrdi3iQnMFcmneHEaFS8MPuCRnfNTHhfRjWhtlmH9WK4of8TjW62qmbfin2XwAMLNox0pkYeN8ILntdwFdROfw970tLpGUhLmT/H3Q9v477RY2Ld7sQMQ7iUb7ZvKQO0brxA88bL+m+8xlyHFwITaGNnbAuuZ1t89GPW93AijZODZ4byOUpEpRReJ94xWIfXds/FC6+GMPB3UiZenVYWPFVc4xZ4rfRZ3KWxNR6lcjcesfIspeUdMgXP2eP3mDCAffBO57Pw2PO1YntFXzbuDnktzn1crPtlPAdVdXrStMP67HieptAYdVM2rh8f2HZwfF8Wdx39Lrd9H3wE8crxu+ggwLS0bUmql12QGIY/K24kDjKzh2L9nLgLYAN8kNFl2TEWb0cRVsBHZgqvQZ2Kh/nNQcx8ZGbftueQc0nzAF+Z2R2S+uPKhT/CI0oulvQM8IKkxXBXU0khsiyPkg7HDeF7uKE4GQ8BvB93fXyHG9ZSDAX+K6m/mX0h6SPcwGcyAt9I2lbSNVZC2qHIda4Y+dgLL6R/i7tJxuIRJhvg/SxFJ/bGO6X3xSdfuQ3X658Pj5i6Dhf+ugWYU9IBlpMjyOUhL4GwDT4CeUW8MNxMEmb2fyFW91jIIUwt99+byzv0MbOpZnZkyDmsGufoZ2V06IOBwJ/kE9G/gnc0rx5SFG+Y2ZXyyer/HM/4h3Hednkeey2dXdqkpfSCuyOWyt5dvLk9Ln5nMfMlXRzxexs8LHEf4NBYdw8+dd7CHXQdB+MdmzvgncsH4gZ6KN66eAw3Zs9RhbAVPpDoCdxV8jBeA54Jd2/cANxV5th5aGxZ9MdbSevgRnlyfM6I10Cfp8R0i4X3O/IyDNezybbNFNf0M7wT+Si8I32bgjTmxgvkfnGPbsZbJ3Phrqln8c71xfCWWEk/fUG6h+GzXC2AR7schLc6LoxzzVHpugrWFXZYPwCsVkU+FPf0QXzAXOZ6G0PT+P40OXg7Lp2egbQU/CE++OfxeCEuAh7JbRuBd6TWl3gZ86NrfxUv+qLxso3Fa5Yr4zXqtTr4uu4Lw7pF/D4Yr30vG4ZgKDEYrNi1xfp8x+DOeAH2EB6JM5rGztNybqCaFjy5+31lpDmRph2W+xOTeofxPoyCiBfc9XQLXnD1xad/vDGuccH47y7HO+SrmXhkm7iGJfC+nv0JlxbeX3A5ZUb/5p6jSh3W51AmAiyXziC8IF4vrvMoGucivpboU6FM2HBaavAOdnYG0tLsBZoxXshb4vddeHjbifhAnqJRN7njM6nhFYGP8DC9AXghcRPehN66g64r718/PF70f9A4EOhgvAAoO/tSLo1sUNPmuB96fG7bw5XuTW7fNhc8ubSWxd0tK8bvq+L3SNz4v05EvxT+1wXp1Mex4/Ba9054K2XnSGdfQsKgijzNhBcW6+P+/qfi+E3xDt9yE6i3uMO6Ql42iefxcrxFtmY83z+La76WErLJaant0ukZ6M0LoSsT3wcDA+N7NpAqi6PfIl66LEStXCz1BXhkwwb4IJ5F8djzOfGBWCtVSqNG15bV6n4UhiYzhhcB/8zttyMlwivxWm1m4PenMcpmBTxe/AS8trgj3mFYbhRqzQqegrT2xuPBj82t+z+8w/cuygxQy92jLA8D8A7Q8TmDfwuhKFnFfz8K2C++/4zGTtFj8cL+TUqEoNIOHdZ4K/VVvNCZP9YNxMcb3Ee0eNLSMUvSs+8kJA3Am9o3mtmNkp7AX4DLzOzfof/9CC4CtpWVmIUpp0e/Nm4g1sajVBYBfmJmb0p6Ezc6b3XApeXzthneMfhs5OckM3tA0qV4Le8z3Of7r8IOYknz4a2ZrJP1QPx+7YdHJ32BG6j18M7PE8ys6CxOuXv0Izz+/gUze1HSRcB2ZjZ37Lcj8KUV0X4vktaauGtiAO6G2QJ41Mwujf3q8ILq21JpxX6bx7W9jmv9XxjXvQjegtkWeM3MXiyVl/ie6eX8GC9cZ8A78XfEDe7cuEb9+yXysS0uLf1n8w7rE4HPzOzM3DU/B4yy6jusl8cDDA7Mae0fgfdfjMP185+rJq1EDejs0qa3LriR2Av3Ea+Id+49gofKZTW9n+LGrmwnGN6pOAkfVbsT7pLIBs6shNc8WzSEvQbXt1hc29y4nsoruLHO8rURpUXN5ojP/fCWyuM0huVtFL/3wX3g9eRaSGXysxles70ODx3cNNZfCnyKR89k972Sm2QLvDP3Urw2PTMuSjaGXDhsFXlaA3f5LIq7Xe7Fw0gH4H0AEyrlJdKZNz5XxUXWrov78x7eGirXEVuzDmsaWyqz4BWPhfER2yNy+/wC2Luz37/euHR6BnrzgtdK78QjY1bBR0g+jrsnfoL76hevkMZcuN/z6dy6X4eBv4VOmrotjPzNYYCODyN9KV6DPYbSvuvZ8ZDTNXF3zeG4z/k0GiOQ1o/rOrDKvLS64CmSVr8wymsVrD8AL5xuooRPHO+oXCr3e1fcPbUW3iG8cPzeFu9UX75EOvk+nuXwTurf4a2BkfjE4svhhc8kyujuU6MO65yh3wKvtY/FgwFG4f1Ee9Cowb9+Z797vXHp9Az01oXG2aEOwvXlx4eBWxKvzd5PiciL3Is1J14L3BUPazs+t8/q8cIPyx/TjteT5WlBPDZ87riW5YBrY9uoyOeyZdKZhcaJPu7Aa5u74C6KA2mczGJdqgwdpZUFT4m0ZsALnyzyp28Y6wtwt065KJfN4n/dF+9TWQevPU+msXZ+BzEzVhV5WQkfjzEKL2hewysKF9PoIy8bOhr71KTDGg8OeB5XwrwSl3VYG48iuwWvlFQlIJeW2i+dnoHeusRLmU3l1h+vzU2gsRM2kzUuFYa4Cd4iuCCMyLbxgnWooFlBnkbhLZMbcB3y5SNft+Edqy9ResLyfKfnWniY4S14AViPu7zG4GF7M1TIR00KnoK0VoqlP+6y+RONBekmeCusrDspruNGvK9i51h3PT4YbBW8JfMqJSYhwV19R8T3g3DX05NhnGfBC/ixwP+Amys8P7WOlKrHB5StiQ/Yuwp32YynILCgVJ7S0r5LGkHbecyO18ivN+8QexqfyegMSVviTV8s3o48kpYjZqkCPjazlyUNwl0MG0s61sxO6agLiTytiEd9bITXltfE/cdz4ZN+H4p3oj5Y5Nh8R+PsuCTwyrhR3QPXkRkrabZIb0a8M7MoZmaSRuF9Hh8Cn+O13cWAGSXtjEsG/MLMXi53XZHW5rhrZHyc+xJ8cNQfo7N5J3xqvq9K3BuZM03SRFz3fXdJL+IGcne8dfc1LmnQbORvdPguA6wlaVE8hn4oHk65Ld5JfBnuBjo/rrnU81PYYT3BzM6LDuu/4DIMF0n6F95yqUhc24y4K2pV3P3zIt4Rf7uklfHCxIrlKdEBdHZp09sWGms3s+EjWc+N3yvh4ZYl1RlzaQwnRmricdTZHKeH4y/+Ch18LfW4IToBjwZ5Bu90PIJQU6SxE7CcqNlhuBTxJLzfYSXcf38+Hs54IBGeWiFfK+Id2wNwEbLH8MJ1Q3zk55N4VEk117gM7q9eFHeVPIeHfQ7Ba+ObUJ1M8Qg8OmYR3ID+Cm8NzI3XykVj6G2pKQlnBbbH+3n+mNueDaL6BSUkiovkq5Yd1vk+hH54625A3KMbKTFzWlo6dqkj0a5IUv63mVlo33yGG7QVJD2KN+evsyLhg1kaUXMC+CcwStKm5nol0wmtejO7w8wmtd8VNeYprmUkPtR/VtyP/nPcPfU23pyfOw75EprWNENvJavR74TX4vfDwwXXwo3Yxbj/fhk8tPHTUvmJz3rc33w/btA2jDT3BIaY2dG4K+kPhf9NYVrB3HjEzMd4y+A83KCNwQuwB83smVL3Ke7RlnhrYE68IJqKuznuxQeDPYFHUv27yD1S/L/g/QVP4i6X6ZJ+GvvfGWktjrtwyhIaREfj/vSTiFampI3M7AC8wN7NzP5VmJ8i9wczmx73HXOdnBnj+h7Bx4r8pVKeEu1PcuO0IzmDuBHuLx5gZidYY8z8S8CPJC2Ix0D/o5ggWaSxGXCEpEm4guLBwPGS5sU7GjfEX/gOIfK0Bj6L0z5m9pykKbjRX0vSMrh7Yp9s//zxIYJ1sqT9zOzfeE1wrJn9LbbviQ+UesrMrpJ0nZkVFUgrKHgOxX3g6+IdhTua2dshwpUZzWYFT5Fr2wx3QTyCd3wuBXxiZtdJWhYwygi25fI2C97BPBJ3rWyP9xU8jNfQ38Lj2YvGv+cKw4Pxjt0n8c7mK4FNJR1lZmeZ2U2S7jWzLyvlKa7/E3w8xia4u2sH4AJJVwBn5AqYwusp+Uznnt1dcAG288xsfLFnOtHxpJp9OyGpLl6KDfBa3T+B/xTs0xfAzP5uZv+I78V8rCvhLpF78JrbAfh/dxxeCzsQ94ePb7cLKs5AYOlYwCNd3sAN7W7AIWb2eOFBUTP8H15bvkCuhDkV9zcDYGYf4y6A6fG7rBJmruD5nZk9hRcUk/GCZyu84Bmf7V/uoiQthbtEPo9rmRkP/VwkCqnt8RmV/lQunTjXl/h/9QBecCyMd+4uC3xjZndnBrFIPrLWymZ4h+wuuNvvSby18wiwahQE4CGTxa4nS2dB+WA1cN2k/+Eyxw/jLaF3gPvLGPqyz3Rsk5m9bWbnZs9jMvRdhFr7hXr7Qo2HneMdcS/TGLmzOF57vZaYyYcOEpDK0sf7DDbHa6ujgA+A7WNbfXwWjUzJ5xHvoH4K71jsizf9n8ZdNvvjnYWLVZm3zfGCYa/43R/vML4cd3uUnPGq4NqG4q6ofeL3JnghMg5viT2Pj7qtJk/ZvRBeK8+m75sf9/0XVa/E3Soz0TiuYFvg5PjeN56hY/ECbBRlwj1zaY6i9ZFS7aL9n5aOXVLNvvYMBQbIddKn42JkTXTSgW1zNaxmFNTyPsJ1zH8JYGZ/xeOiJwOHRRSOxbZ2rUGZ/eAquQaPuFjGzP6AtzpOkrSzNbqovi6VBoCkI3Ff+iP4YKOxkc7TeF/GtrgLpqjEQ662OjyiZabGMf8naXsz+wI43cz2w0dslpRAyF3bhriL7MfAIZIazKOH7sMjSR6LtG4vVxPPpTkt0jAzuwJYT9JjeMfsyWb2SpE0Nsc7TR8Fto4onH8Be0ta28y+i2doKeAjM/uDRauwFGqMlNoa73hdAo+U+pwKkVJBm5/pRBegs0ubnrJQo2HnNNYw18JFtpbAI3duAR7K7bcoMLgDr0941Mgfca2ebP3seK16U7xQmpsKLYy4D/fQOPH1IFwudwyN4wvKxtLHPiPxiJLReOgjeOfua0Qce/6eVkhrubi2bPDQ47jRzSttlpvesOwE6rFtIO7LXr5YvuIcL+Jhq6uTq7HjfR/P4bX53fAxFotWkZ+2RErVVPs/LZ27dHoGespCDXXS8SHnbwK3477e9fBIjmuAJzv5OscSg37CkCxB44QqRXXkKRihGgbiJRpdJQoj+CbudqkrZ6CpYcGTu47dcHG1vWNdP7x2fSe5STvKXR/lZYHLztGK9wvcSuOUg7PiLqSxeIfzDnhBcgvu9iopC5wz9CPxQnXNuJbnaZx79kRgdH7/9nym09L5S6dnoCct1GaCjiXwWuWceJz5G/Fyr4sPKLqeKmYHqtH1ZEZj6chLX7wTdjIx7ygevvdgGMeSMr7xfeswxgvh0UN/IiQhcP/9+bRAsI1WFDxl0uqLd4I+QcTgxzU9SYlxC9TQlx37PoIP0Fo4nqV7wkj/GpdLbsAj6KopwDKRtdXi9zl4n8geeJTSO8B6HfFMp6VrLCn0so0UhJU9hNd8xkha3nwUIrhx3NjMHsmOyx1TyPd4vPV8eA3/p3iM+Fm4cdvHKs/5WRPMzCRtjI8WnYi7k9bHm/dPh/95Y9zfWzRP2XVGKOVvcPdDHW68zgAulbQD7rbYworMqxrHZyF/S+Px5i/jtejLJK1kZlOj/+Jb+XymH7bwWr+TdCVuyA4LX/ut4Scv9V/VbB7b2HcsHvc+C274rzazRyTNHefqZ9WFVkLTSKnn8EL6ULzSMIASkVK5vNfymU50BTq7tOnOC7WZoCMvajYbbiyG4aMzL49tu+DunLI6Lu1wfcvhI1fXwg30hXjNtx8ekbMVMDx/HSXS2QGvVfbHWyfZBNpr466XJali/lG8YPkQr/FOwGu6F+IFyGm4v3urNl5zv8jfn3A3UDP3C+3oy8Zr9UML1u1CjAKu4llsdaRUrZ7ptHTNpdMz0N0XajDsHHdvPBFG60h8lOX2uFzuNrh8wMYdeE11YcTeDKM6KLf+fDyGfVCZ438QvMLdDlfFvZg51i+C6wDdD4ysMk81KXiqPNcMlJ+6r1192TTKIozCO2anUMXUfdSow7oWz3Raut7S6Rnozgs10EnHa/FP4nHPm+OujZPiZb8ArxmO6qDryYx0VmtdAq+p/iK3T30Y2rXLpRHfM9neOfCC67HcORbDY+nLxojTxoKnHe9Vu/my8dbOz3BXzg2VDD21jZSqmfZ/WrrW0ukZ6M4LbdRJx5vsl9NU1GpVPNY86/ibPT47asDUZvhI07Nxyd0hcT0/a2F6h+KRLOfGvRkUBv/B3Ln6VJGfVhc87XWP4nubZYErnQt3U7Vkcu+xtLHDuq3PdFq67pIGVbWAWg07z/FvvKNxuqRtJNWb2Z/x5v9SAGb2n/hs184vsx/0Tk7G/bPz4m6TAXjt8ChJv6wmLbmo2Y64z3cFvLP5cxprv7fHrpXm1d0MuFfS2fiI0u2AfST9LPI8zcwOsSpkC9pKLk8/krQvLgu8I97R/JfIz0V4LHtVssDlMOd7M/uuVH7ic2lJK4X0RtZh3cd8cFvFDut2eKYTXZQUjdMC4mUfRQ100kNn5AtJl8Wq4cBScl37zfFaY4chn+B8U9yX/hLej/Acrr9zCo0TmVfDAsDvcT/6t7jOzDF4GOEOeCdtyQKsoOA5Fe+3+D+8prk5MD6iZU5t8YW2klzhk02gvo+kk8zsYEl9JH1KmQnU2yk/bYqUyqUziho804mujdrxeexxxLDzS2g6Qcd2+EQbm+AG+/fmEgL544bg4ZN/Byaa2fOxvs5cHnYAHv+8K17zPcXMHoyaftHab42up4lBkvRbfJLqWXD3xHvAFbhLYUMz+7gaIyZpe9w4v29m68e68cCJZvZoFfmaIY6/DS94LsM7RIfhBc+nuM5Mhwm/yWWBL8N1ZGbHpw98AQ+PfDgKp6/MRdg6Ij/L4a2I+3C33/n4/dkIHxMxF67S+XS5/6y1z3Si+5Fq9hXINd+L6aTvghvx/5nZ0bl46/zMS0vS2Dk5HDcUz8MPOuB9zOxzSVfhRnVpYI4oCNrN0Mf5M7XIIfg0gGdE/p/FY/wH4Eb/Z+YqlNW6k57AI4heCmOyKF7zfKPUAfl7ZmbfSvoCd2Wtgrt93sNr+FfiBc/49q49F9BqWeBaElo5M+P35CPgnHiODsNbHROBDczs6eyYwnvU1mc60T1JPvsy5F6KVk3QEQOAxgAXmNnP8FrY+pJ2lbR17Ds1avBf4R1s7+G1qv4dcH3r4WGRW+Bzu44Jv+17uOF4CLjSzF5tSbpRMByHG6Vz8flj97ASA6biGJO0hqTdJQ3HjeeVeGvnCVxK9x/ATi0seFpFV/NlZ/nBw1e/wN1Zs+L6ScT5j8Dv1RLl0mnLM53oviQ3TgWi5ns5jRN0nIO/II8D/8WN2T5WMBoxOsXeBp42s+2jRjYuNr+JD4s/xMyujv2zl3AWXIvlP+18XcvhQ+iPMrNJcp32A3C/80N4PPuLZvZoa2t1YaBmwp+zsiM/o+C5CI+4qcNHEh8deZwKrIZLD9zW0ny0ljK+7F3wmnXmyy6lFlmrfOQ7rH9BuI/w2P57gUvN7MwWpNeqZzrRzbEuEBLUlRfaoJOO+0G/xWtf1+MTXmTbDseFzfLzd3bIABU8LG93fOLrfWNdH7wGfknBvu2eJ3zA1GOEBg0eo342PjhoOG70N+jge1SzeWxrlJ+N8BHCO+FuwfvxFuDieIunJXMktEn7Py3dc0k++wJytajheHM200m/SNKXZnabpNPNtcpnNne/FEun3rzjbgu89vWsme2a2+UrPESvjsbZmDqkmRV5vxl3s2wt6W+R178BO0qaDfjczKa3d57Cb7w8btRXxn39b+Ids2uY+56fjn3b1W/cVX3ZbY2UqtUznejeJGNfQLwUI/HRq9fjRu8seRzzSfKQvxtj96ITdEQ606KT9ZGI1BgnaVczu17Smrj+yvFmNrW9r6lE/r6TC299A1won/R8KeBsM/tvB+ajSxQ8Bb7sNs9jW6v8xDna1GFdq2c60c3p7KZFV1qo7bBzxZKJT2UunTPxYf+bZft18jX3xWuMk4CjOytPuB7NnnjEzsW4/7hNomatyENNZIFrnJ/d8VZPNpL4WTyscjG85TG0Qho11f5PS/ddUs0+h/lb8KWkD/DJlDM3w1zAz81shKTVzeyfhcfmaoazmdeM68xrrdOjhv+wpC1x9crtLabJi3N2GuY1/CvwmuoRkl62du5wLJGPbyXdiBum/YHrzOzuDg75a7UscK0p1mEt6WgaI6WyDuuykVJteaYTPYteb+xzRrpNOumRxpbA7vLRlK9KutHMPgEs58MfaGafdaW45TC0N+PyBS0Ks6xxPjq04OmqvuyIlDoeV6rMR0odgHdcrwVcYSUipWr1TCd6Fr3e2MdL0eZh5+GHPwmPWb8wjr9GPmhqqjUOkPq83S6mDYTBv76zC6COLHjiv+9SvuxadFjX6plO9Cx6fZy92jjsPFeLOggfcPM2PpHGjngH2hSrQiIg0ZSOiLzBO4XvwAe93R3rZ8clA6bjao+rAB93ZCEYhc0+eCTQ+dEiXB8PQd2F6LAuc3xNpBQSPYteW7NXG4edZy9Jbt3fcG2RWfB5Vf8WL2jyhbaC9jZAXdmXba2MlGrrM53o2fQ6uYSo0UEbh51HbX5dSQdJ2g5/ub4AbgUGSFoJHxxUUg8m0bFk/73aKAvcEZjZt8CNuJEeDtyXdVgX7lurZzrRs+lVbpycy6XNw84l/QgfAZvpt1yGh1Yujb9QAs6zpBbYpSjhyz4Hj27J+7Lv7qQsNkE+oGon3FgfW9hhXctnOtGz6VXGHkA+wOl0GnXSB+CRD5/hMzSdbxV00iUthQuHPWRmt8sljI/H5YvPkzQzMMDMPkw+0a5Dd/Vlh8HfHp8w5b0i29v8TCd6Pr3KjaOmw87vxTvhsmHns+HDzp8udXykMRjYD5+2bQVJs5jZm8B5+IQWA83sKzP7EJJPtCsgqU5Sf9yXvQ7wZrg2DsOjXCYCb5nZ3Zk/uyv9b+HSub6EoW/zM53oHfR4Y5/3ccZLkw073xd/+e/FxaSuxCefGF/MLxppzYVHRFyOj4SdGw+PA3fh/AdXa0x0AXqSL7swOCC3vk3PdKL30CvcOGo6QcfL1nyCjvPxCTqaxXUrZpPK/R6DG4/dJB2D1xS/xzv2TjWze9v/ihKV6Om+7LY804neSY839mqlTrqkmczs6/g+BBhmZndEs/l0PDb7DUlH4J16D5jZ+R1zVYlq6Km+7NY+04neTY829mrlBB0RdncRcCfwCi5GtSX+ct0Uv8eb2eWx/9H4C3YtHiLX7tPTJcqjLjiPbS1o7TOdSPRYn32RYefQOOx8HjN72szOKPZSmA8hH4NPtv0HXP5gPdwFsDYxjVvE0mNm2WQWzydD33n0dF92W57pRKLHjqC1tuukv4KPrJwTWNvM/iDpp/isPq8Bo4D5cV8wZnZuu19Uoizho2+PCdS7BDV4phO9mB5r7KFtE3SY2ZeSVsdrUFdLmt3MrsKbyzdImgbsJekB66QJSBJNKebLVitkgbsybXmmE72bHm3soW066Wb2DfCn6IQ9P/yj/zOz43FVxgWABrxTLNGJqI2ywN2JtjzTid5Ljzf20HaddDO7R9LXeAhfFnHzIbBPFAiJTqSIL3sSnTSPbUfR1mc60fvoFcYe2q6THjXCCWb2Xfx+stZ5TLSO3urLbusznehd9OjQy2K0pWbXU2qFPZWcaNivgLwvu0uImrUX6blMVEOvqdlntOWlSC9U16a3+rJ78rUlakevM/aJnk3yZScSxUnGPtHjSL7sRKI5vc5nn+g99HT3TSLREpKxTyQSiV5Aj9XGSSQSiUQjydgnEolELyAZ+0QikegFJGOfSCQSvYBk7BOJRKIX8P8n2kmeT6p17gAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# contingency matrix for query dataset\n", "y_true = obs['celltype'][obs_ids2].values\n", "y_pred = obs['predicted'][obs_ids2].values\n", "\n", "ax, contmat = pl.plot_contingency_mat(\n", " y_true, y_pred, norm_axis=1, \n", " order_rows=False, order_cols=False,\n", ")\n", "pl._save_with_adjust(ax.figure, figdir / 'contingency_mat.png')\n", "ax.figure" ] }, { "cell_type": "markdown", "id": "bf86aa57", "metadata": {}, "source": [ "### Plot heatmap of predicted probabilities" ] }, { "cell_type": "code", "execution_count": 9, "id": "ef5fe931", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "figure has been saved into:\n", "\t_temp\\('Baron_human', 'Baron_mouse')-(12-16 18.13.20)\\figs\\heatmap_probas.pdf\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhAAAAERCAYAAAAqtJ6xAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAxOAAAMTgF/d4wjAAB4ZUlEQVR4nO2dd5hdVfX+P++dnkJICCEkAUJvgvQmIE1BLD9QFAEFREEFEcFeKKJ8RaUpIiJVOhYUUFCkhKIUQTrSCUWI9JAykyl3/f5Y+8ycuXOnZsqdYX3mOc/cc84+e6+zT9t77fLKzAiCIAiCIOgPhZE2IAiCIAiC0UcUIIIgCIIg6DdRgAiCIAiCoN9EASIIgiAIgn4TBYggCIIgCPpNFCCCIAiCIOg3UYAIgiAIgqDfRAEiCIIgCMY4kiZKekjS7DL7NpJ0j6QnJJ0rqaYvcUYBIgiCIAjGMJK2BG4D1u4myMXAEWa2Vlr/Ql/ijQJEEARBEIxtvgAcDrxUukPSKsA4M/tH2nQBsFdfIq0eLOuC0cM6a69kj/zrTF9pbMQmTUKNjVBTA22tAFy2w73sNPu/3Dx3BgCfvG0raGmBqiqsthY1N0OhgFVXo9ZWrNpvJRWL/rtY7JpwodCxPf+7uzAJ5datUOgaHvyYcnGmbSoW/dhsfcGCjmOXNMGEidDWBk1NMHFi5ziKRSg9p7ZWqKruSKO1tSNMfl+5/dCeb+3xg+9P59hub0me5LertRWWLMEmTuy4HoUCam72a9Ta6v+bmvz/ggVQVwfV1R6utbU9D7K8ya6lWlvb48rs6pQf6b/V1nayK4uzU14vWgTNzTB+fEf4zMbS61V6HYtFrL7e41nShNXVo8ZG9Mbr2ArTO/IxHWfV1Wj+fKit9XPN4gOYPx/97xVs5gyorYGaWli0yMNl+b9gAdTXeTopTzudc/7+K733lizx9Zqa9mvefo5Llvh28Oco/db/5mHLTILaGqxhHKXkn61OaeX35+6X9ucvhe1ue2Z/p/jz16Kn8y5jV/v9V1MLVgQV/H+5Y/Ln0N3v0rS7sYNi0Z+1ttby+3o6Fsra2SXu7vYPhNw59nZtAaprd1G7qVJ3uhMv0NkZcIqZnZIPYGafSXGUO34GnQsWLwMr9nwiyb6+BArGFgsXNo60CUEQBEG/KffJbi2Y2ayliLQA5AsnAvpUaooCRBAEQRCMAqSuXpRB0MN8kc4eh+mUaeooR/SBCIIgCIJRQaHMsnSY2XNAk6Tt0qYDgev6ak0QBEEQBBWNkKq6LAOOTbpW0mZpdT/gFEmPAQ3Az/sSx5gsQEjaW9J9kh5I416/2Uv4AyVdMEzmDTqS5kjaIS1zRtqeIAiCYChYOg+Emc02s7np9+5mdk/6/YCZbW5m65jZvma2pC/xjbk+EJJmAj8BNjGz1yVNAG6R9JiZXTXC5gVBEATBgOjj/E7Dxlj0QEwFaoDxAGa2EDgAeARA0vaS/p08E9dJmpKOW13SzZKelPQHSbWSrpH04XTcMZJuS78nSnpezgmS7pT0WPIETE9hXpF0aprd62FJm6btcySdKOkfkuZKOrD0BFLaZ0p6PB27f9q+saRbkv03SVpnKDMyCIIgqBSEVOiyjCRjrgBhZg8AfwCelnS3pB8D1Wb2lKRa4HLgIDPbAPgHcEg6dDbwcXymrpWB9wF/BnZO+3cCVpU0DtgFuB5YHVgP2MbM1gGexduSAJYHbjezzYBzge/kzBxvZu8B9gROLnMahwJTgHWB9wLflDQJOA/Y38w2AY4GLupLnkg6StKL2bJwYVNfDguCIAgqiIKquywjas+Ipj5EmNnhwGrA2XjB4J+SPg5sAMwzs/tTuB+a2YnpsFvN7DUzKwKP4p6MvwA7SRoPTARuAbYBdgOuMbOngK8BB0s6BdgWmJAz5S/p//14gaC37Rk7A5eYWdHMXjez9YGVgLWAqyTdD5wBzEiFot7y4xQzm5UtEybU93ZIEARBUFEIqbrLMpKMuQKEpA9K2tvMXjCzs81sb+DL+NCUVnITZqSmiFXSaksuGgNkZi/iE2rshXsr5gA7pOUGSZsDf0vH/A74Iz4Jh0di1pSPLxd/U9rf3QjeUjvXBKqAZ8xsIzPbCNgY2NLMmnvOkSAIgmAsEE0YQ89i4P8krQQgn7tzY+BB4HFgeUnrp7BfAY7oJb6/AN8DbgZuAj4DPG1mi4DtgJvN7CzgCeCD+Id+aZkD7J36WCyX0p0HTJa0QwqzL3DNIKQVBEEQVDii8powxtwoDDO7WdLxwLVJklR4f4XjzGyJpH2B8yXV4X0W9gc+2kOUfwG+DdxiZm9IasH7RgBcAfxR0pO4V+EevOlkaTkTWAd4IK0fZWb/S80wp0lqABbR0d8iCIIgGOOMtMehlDFXgAAws98Av+lm3+3AFiWbL0hLFubA3O9/kvPUmNns3O//lokr25dvypiDN3tgZjt0Fy63rRn4YpntdwBbltmej3OH0v1BEATBKEeiUGHDOMdkASIIgiAIxhrhgQhGnIWvNHPLbrczrWExa2z8JtffujITq1spyFjQUsMG015jnzkfhOYN+WRdnctcL1nCn3e7lzeaq3j07SpWbDCqBcvUFPn0P7fuJA3dLlNdSl4uuLWz/G4mOdxFjrtEYris/HMWVzm53rxdS5pcwhko3HEvjG+g5ZYnqV55IlQXoKkVLT+R4i7bQtOSDvntvFRzJr/b2gqFNqiughaDqipoaXb536YlkB/osqAR6us9jmLR5aiLRWy5NACnucXjbWvz9MaP93D5c8zkmFuaoa6+PT+oq+uU95mN7XmZk9zOpLwhSaRnMuN5uefcNcjCtMuHZ3mdlwPPXb8u1yC7Vg0NLl9dXd0hr2zF9mvZSQY8b3teLrroEtEqFqGmBpuyXIcUeXV1u5x0u80NDS5R39rqMuKFApo4ERs/3uWZ031AQ0N7XlqhgMaP77Ah5Udeer39dz5fsnOtq3N59SyP8zLZeWnx9Nuqq2HZyR0y31m+569nyou8LDd5qfd8/oPfH7nr1Ukavptnq/3c8seVHE/uWrVfkySjbtXVFB59jOLaa3RIyC9ZnJ6Dus6y9+lc2u+zUruWNEFrm+dRdn2z6w9+PdtaPUwmm96c+pHnr2u6T8nfo6Wy9AWX8i4rM95+/sXO20vzsFSKvAfZ8U7PWC9y6e3522mMnaga4T4PpVSWNUEQBEEQlCU8EEEQBEEQ9AsfhRF9IIIgCIIg6BdCFTbzQhQggiAIgmAUUFVhHojKKs6McSSdI+l+SY9Kak6/75d02FLGa+n/cZKOGxRjgyAIgoqi0maiDA/EMGJmnwOQNBuYk6akDoIgCIIeEaKK8EAEvSBplqS/JSnvf+WkwPdJ8uD3S7pE0sSRtjUIgiAYHqSqLstIEgWIyuQXuNrnu3C1z+MlrYPLfG+bPBePAsf0JbJSOe8lxdDfCoIgGF2IKqq7LCNJNGFUJjvjGh2Y2S3ALZK+hMt53+n6YNQAT/clMjM7BTglW1+2ZpnuVECDIAiCCqVQYU0YUYCoTDpN5ShpA1zl87dmdnjaNh6oGwHbgiAIgmFHFEa4yaKUaMKoTOYAnwSQtB0uDDYH2FPS9BTmVODokTAuCIIgGF4EVFHTZRlJwgNRmRwOnC3pUKAROMDMHpJ0LHCDvA3jP8BRI2lkEARBMHwUrLLq/FGAGAHMbC4wu4f9LwIfKLP9XODcMtuV/h83WDYGQRAElUTlDeOMAkQQBEEQjAIqbSprmUWH/Hcas1Zczp6/9SfYCiu4BO6Chb4jk5F+7TWX031rPrbidGhpccnbhgaXn62vd/nqJD/97jX/BMAi3qSeCTSxkCpqMIrtN7yRpINzD0ANdbTRSpE22mjpdEwd41jCYqqooc4aqKKGxXqbVpYgClRR0/67hjpacLntKmpoowWAjy37bq5+6zFaWEI9E1insDL3Fx8F4PEnP9UhB9yW+qwWDRYtwqZO7SxlXEIm6dxJKjmTQm5u7pBzzssp5yWhc/LV7esl8ZRKC7eTk3Zulw8ukVHP290pbnCJ67q6ztLN+bjAZbEzieMUb/6c22WZW1uxunq/hzJU6H49zZqnlmZobcUaxnU9v/ZMLraHb6ettV0aWi0pn0vDWE5+uczx7dcky6va2k7nlx3b5Vpk+ZBJo2d5VVXt55ORyW3X1/u9kIu/U1xLmrCGcahxMTZuQme78xLP5e6DcjLY5aSk83ZnUurZenfS6/njc2l1Ooe0XZm0dk2ty4jX1KLXXsOWXdaltJf4M2kNDWjRIs+XSZPchqYmz6PGxVhdyqv6egrz5mGTlnGJ+9pU266p7ZR/VXNux1ZdydMZP97tXbLE08nOed48bOJEf49Z0Z/turp2Oe2yz1spufzvJPldjjLPYJe8zNKpqm6XEQfK25TSra7dRdmhtYUJ9q5l9+2S9H1vnv1fM5tV3jBH0r7A9/DRez8zs1+U7N8I+DVQDzwPfMrM3uopTohOlEEQBEEwKihYocvSG5JmAj8CtgM2Ag5OI/vy/Bw4zsw2BB7H5x/q3Z7+GB8EQRAEwcgwwImkdgFuNLPXzWwR8Htgr5Iw1UA2s3E93nm/V6IPRBAEQRBUOAIKqNdwZZgBvJRbfxnYoiTMV4HrJZ0GLAK27EvE4YEIgiAIgopHVFl1lwWYkJcqkFQ6vL8AWKeIoL0zh6R6vP/Dzma2InAWcGFfLHrHFSAk7SBpTi9hPpRdhP5KZEuaLWlu+n28pI/0En6pe7FKmpPOq9dzC4IgCEYnBdRlARaa2azcckrJYS8CK+bWp9PZI7EB0Gxmd6f1M4Ed+mZPUI7NgGWWNhIzO8bMrh4Ee4IgCIJ3OFVl/vrADcAukqYlCYSPA3/N7X8KWFnS+mn9I8C9fYl4VBYgkrrkvZIekHS6pOpU839A0vnp/12SVk3h3y/pEUn3AAfn4llT0k2SHpR0h6TNU+/ULwBfkPS5FHRzSf+U9KykM3uyo8TOCyQdmH6fIOlOSY8lj8F0ukFSraQzJT2eJL33T9s3lnSLpH8nu9cZpCwNgiAIKpisD0QZD0SPmNl/ge8ANwP3AReb2d2SrpW0mZm9iYs3XibpQeCzwGf6YtOoK0BI2gXYBu8EshEuKPX5tHsD4AwzezdwJ/AlSXV4e87eZrYZ3kEk42LgzDR05Ujgd8ATwK+AX5nZOSncirhC5nrARySt34sdpTavkY7dxszWAZ4F9uvhNA8FpgDrAu8FvilpEnAesL+ZbYLrYFzUY2Z1pN9Jznvhoj51sA2CIAgqiCoVuix9wcwuNbP1zWwtM/tJ2ra7md2Tfl9nZhumZWcz65PS82gchbEb3kM0c7HUAy3AX4BXsgwB7ge2xwsVL5nZw2n7RcAPJE0A1jKz3wGY2Z2S3gTWLpPmdWbWCCDpKWBqL3Z0wsyekvQ1fPzt2sC2wNweznFn4GwzKwKvA+tLehcu531VkvMGWF5SbQ/xZOl3kvOeteJyMXtYEATBqEJUD2wUxpAxGgsQVcBpZnYyQKqZG15jb8qFM9zrk/3PyKSyyxXdBGUnG28pE29PdnSOVNocuAz4Ke7laC2xqZRWcr1mJa2Z0nvGzDZK2wTMNLPmXIEiCIIgGIMIUIUVIEZdEwZwE7C/pImSqoDL6bm95iFgmqRN0vq+AGb2NvC0pI8DSNoKHy/7MP4B761w1R87tgNuNrOz8CaSD0KPvV/mAHvLWS6lNQ+YLGmH3Hlc04uNQRAEwRihWoUuy4jaM6KpDwAzu0bShngfhyr8Y3sGUHYu8FRD3we4QFIr8O/c7k8Bv5J0DNAM7GVmSyTdDFws6fVBsuMK4I+SnsS9JPcAq/VwmmcC6wAPpPWjzOx/qbBzmqQGvC9HT/0ogiAIgjFEpTmbR10BAsDMTgBOKNk8l5xEtpldAFyQft8KbFgmnscoM97VzP4BrNpN2jvkfvdoh5kdmNteOvNXFkeXW8LMmoEvltl+B2VmCMvbRB/H7wZBEASjCEFVhZUgRmUBIgiCIAjeSSzFVNZDRhQggiAIgmAUUFWIAkQw0ghobqHw91th5jRs+SnooScpbrkRhceehMYlFDfdEOrqUGMjtLViy0+Dt9+GqirXrp8/HxYsRI1N3D/v065fD65lDx3rPZlRLGLV1X0L29rqYQuFPoXPOIGt2tMCsMJ2ANy4w808/HY9O67wFhPqlvDga1OYWtdMfVUbRz7YSgO1NNNGLVXUUEUjLdRQxRJaqaZAHdUsopkWWihSpE1t7bWDVauW58XW+QAs0RIm2zK0UaSIUUAsW1VPjQq82rqYJbQwgXoAWmijhVbmzNvd872mpuN8i0Wsttbzvb4OVaW8aGmGmtqOMPX1HfmzZAk0NPj1yjKkcbFf1xQeQC3NUFWNVVf7NQE/prXVw7S1tl9XFYuQXYti0Y9dsgRraEDNzWBFSLZZoYBam6GlBZqbYfx4j6e1FRYugIZx0Nbq6UDHvQMeprra06qt9XRbmrG6ek+nrc2HWGV25e6P9t8U0ZKmdnuyc1ExDXAqFlFbK6jg59HaBo2NsOyybpMVQYVOdqm52eMppO3F5o78bmuFokFBycZWKFZDS3P7/dduR1U1am1Fr78BzS2eXxMnds2HQplOcqX7S5+9krBWW9t+vtl1aafTuRS7Pr9pvf05zYXzeD3uqn/eRdt7t8OmTfMw8qfBqqtBBWyZSZ6fCauv9+vUMK59HaCYHV/n918n2xNtO23f+RxV8HuFjvvBZs3qGqbjpH1Tq9/Xlo7Nzk3FosejAiq2tg+HU2ur39Pt75JC53dYds/n30/5fJQ/D5ZLq0u+5q5bOSpt1EMUIIIgCIKgwhHRByIIgiAIggFQYeWHKEAEQRAEwWig0jwQldakMuYJye0gCIJgIBTUdRlJwgMRBEEQBBWO94EYaSs6M+Y9EKnGf5OkP0t6WtJPJX0vyXDfJ2lFSV9KUtsPpe3rpmO3T9LZD0m6TtIUSQcmOe4HJZ0k11i/Oq3/W9Ju6djjJP0myYQ/LelbObOmJnselXSzpCnpmO7s2CFtu0/SLzMPhqRVJf01pXuHpG2GN3eDIAiC4aLSPBBjvgCR2AKXyN4w/X/VzDYFHgQ+AXwU2NHMNgCuBg5NKpeXAwel7f8ADknxrQxsamZfA04HbkuS4HsB50laIYXbGHgfsAmuxLlZ2r4K8BUzWw94E9hH0jLd2FGDy47vb2YbA2258/oN8J0k7/0pfPrt8CoFQRCMNSSqyiwjyTvlY/OgmT0PIOlV4Ma0/VlgMq4psY+ktYBdcSnwDYB5ZnY/gJn9MB1/IHCPmWUKnTsBn09hnpF0Fx3TTV9mZgvTcVfh00zfk+x5KoV5CJhqZm9L6s6OV8zsvhT+XFwPYwKwFV5gyc6zFlgpnVc7ko4CjsrWJy0zru85FwRBEFQE0YQxMjSXrLfmfq8M3AFMBK7F9TNEV0ntiZJWSauLc8eXqmrmJcHz6RTo8B50kQeX1J0deY9DFj5Lt8nMNsoWvODyHKUHmJ1iZrOyZcL4+tIgQRAEQYUjdV1GkndKAaInNgOeMLOfAf8C9sA/zo8Dy0taP4X7CnBEmeNvAg4GkLQaLt19R9q3p6Q6SZOBjwA3DMCO/wBTJG2Qwu0LmJnNB56UdEBKe1vgXt45XqUgCIJ3DAKq1XUZSaIAAdfjHoBncanvx4HVzKwJ/1ifL+kBYFPguDLHfxl4r6SHgKuAg83spbRvMXAbLvn9YzN7aAB2NOP9Gy6UdC/eRNGYjtkPOFDSg3hfjL1S+CAIgmCMUWkeiDFfWzWzOeQkrs1sdu73cb0ceztdZbgvSEsW5iXgQ91EcXtpGmXsye9/X2kE8g4OHwG2NbNFkr4OzEjHPgbs2NM5BEEQBGODSusDMeYLEKMdMzNJbwD/ktQCvAAcOLJWBUEQBMOJGPlhm6VEAWKI6M270c+4TgROHKz4giAIgtHHSA/bLCUKEO9EzKC+FltzZairwxoaYKN1oVCg+C7/r7feRM+/hE2aCA31UF1N4YUXoWgUV1kJ3poPE8dj48e5LG4mu5wkb/O0y+Pm1nvan9+WyUdTXZ2TaS5/TF5quF2KOtuepHszCehdLl2bnRsaXAa4pZnVW9uw6irUtITbMknhTGY3k5buTu44LzkNXcOXyo+3tbosdbKJYtElrwHq6thqxT+yStVUnmt7jRaaqbdx1FHLa4VX2H7cGjyw8A0mUE+Nqnj3lHr+/sbL1FsDK1SP58Hi4+w8bn3uXvQy31l9Kt975hnWZFXmFd9i60krsNVyrVz8bCsv8DIzmc70+jpebmziLRbxWuEl1rS1eJlXWKd6Ji+3LGLrKZN45u1Wnm57hQarZ/X6ZXm5qZEW2jh+/QKHPfoq9z2zh99W9fUuWbxwgd9TVdU+ZKiuHjUu7pAkLxbRgoXY1OVdArmu3qWe89cuu6RPPEnbu9bHampdcrtQgLY2OO8a+OJeHr7ZJcPV0uJS5Rdfgx24Z8e1SpLNmj+fwl33QX0Npx8Bj7wF71uxlQ2Xe4NfP74CT7y9hO+/ezHfvK+W5Wrrea75LTaaOIX7F7zBFI1nUk0NLzYvZKW6Cbzd0sorxbeZQANHrw8/eqTAJsuNY1ErPD5/MQtpYvmqCTxd/C+b1a/Ci42NzGxooGjQ2FrkirOaKO6yLVx/F20vLWLJS0bDLz7d7XOhJU1QU9v1ns/dW2pc7HlZemx6FvLPTibBnsWRSWerubmrhHcZSp/z4labe/pJTl5FfydQU5sk1Dsk6bM4LXet25/13D1i6ZnPbGmX025q6pDhLhQ65OaTLHun47L7o1TCvLHRn9FMhr5QgAULoKEBFi1C48d3kvFuf2aTlDw1NWjBApeoL+Zk45cs8fVCAerq2u8/mpv9vJ54EtZYHautpfCXmyjutLW/g2tr0XPPwSqreB5keVNbku9lr8bIEQWIIAiCIKh0BNUVNuwhChBBEARBUOEIUMfURBVBhZVngiAIgiAoR5W6Ln1B0r5Je+lJSV8qs3/tpPH0gKS/pbmLeiUKEANE0s253/f389hDJLVJWnWQbLH0/zhJxw1GnEEQBEFlMRAxLUkzgR/hkxxuhOsybZDbL1x76UQzezc+IeF3+mRPv88gyNgh+5Gmke4PBwF/oEOcKwiCIAh6ZIAeiF2AG83sdTNbBPweF37M2ARYZGZ/TesnAr/oS8QVWYBI8tVzJF0r6TFJl0qqT/u6k7yeK+n4tO/JnKz2rOSSeVjSvyRtKmm2pCck3SbpVkkFST9OstgPSjo6HVst6eycJPefJI2TdEbaf0/6n3kAJkm6QtJ/kito1zLnti6uxvkD4KCk+lkapovNafs+ku6RdL+kSyRNHILsD4IgCCqMbB6IMh6ICZJezC1HlRw6A3gpt/4ysGJufQ3g5fSt+zfwK2BBX2yqyAJEYkvgSGBdXJzqS91JXueOmW9mWwHfAE5I234BXGNm7wK+Bhyftq8JfMbMtsc9ArVJFntTYGtJHwS2AVrNbGs8kycCHzCzwwDMLJPnzvg+8IKZrQt8jPJzN3wW+F2a1voVYM8yYbrYLGmddK7bJo/Ho8Ax3eZeEARBMKboxgOxMC+WaGanlBxWgE69LwXkx+dWAzsDZ6dv4NNAaRxlqeRRGLea2eMAki4CDjGzk7qRvM74S/p/PzAl/d4Z2B/AzG4BbpE0G3g1J6m9G7CxpGxa6PHABmZ2oqS3JB2GF2TWASb0YPPOuD4FKe6N8zslVeO6Flmh4TLgC8AVZeIptflLwFrAnUm+uwa/0L3SRc57YkNfDguCIAgqiAFOZf0i3v8hYzqdPRLzgKfN7O60fhnezNErleyB6CKF3YPkdUZT+m+57fl4yHUeKZXk/kZOFnsr4OeS9gAuBhYB5wG3lqRXzua8BPi6kvJy3x8ClgMukzQX9yi8N3kXSuMptbkK+G3Oxi3o45TWIecdBEEwuhFGoczSB24AdpE0TdJ44OPAX3P7/wkslzWVA7vjgo69UskFiG0lzZRUwGvj19O95HVPzAE+CSBpO+A3ZcLcBBwiqUbSOOBGXNhqJ+AKM7sAeBPvOJml15Y8CqVp7ZPSWh34O50LHAcBx5nZ7LTMwr0mn++DzXNwefDpKcypwNG9nHsQBEEwRhhIJ0oz+y8+quJm4D7gYjO7O/Ux3MzMGoH/B5wp6RHcs//VvthTyU0YL+EehpXxD/pZQD3wRbnkdRNwC7BBdxEkDgfOlnQoLoN9QJkwv8L7ONyP58nlZnaVpGeAyyV9GvdC/ANYLR1zJfCgpM1z8RwHnCWX/24DPmVmrQCSVsCbJg4uSfunwJ8kfSddyLI2m9lDko4FbkjDbv5DrlkiCIIgGNsMVEzLzC4FLi3Ztnvu9110VZ7ulUouQPzPzErlrRdSRvIaush0zwVmp98vAh8oc0g+fAtwRJk4HwLW7ya9T+RWlbbNJ3kOyoT/H963onT7rXT018i2lbXZzM4Fzi2zPUv/uHJpB0EQBKMcQZUqaybKSi5ABEEQBEFANpV1ZVGRBQgzm0NuoqYgCIIgeKdTXWElCJlVlkskGHpmzZxqc5++1OVzGxux8ePbpXRpa4WiuRTv+PHQ0gwqYOMnuGRtXhY4k8zN5JgBVOj4XY7+7M/LZ5fSl32laeXW1bjY5XczueK03erqO0t5l0pyl5PnLpUiz6SOS8OWi7ebcymVS26XN25q6iQdXjadlFZe/hwV/Jyt2EXyWcViu1x2e5qZDHL6nUk7F155heK0ae02Anx3w3v43Vv3UaSN1YprU6tq5uo5FttbjNOyTC/O4F3LTOS2Bc8zX68y1Way/8zpnP7SI+3mjrOJLNYCxtlEGrWIacUZvFF4lS3qVuemprup0wQ20Nrcbw+zodbnnPe/yDZ/a8IoUm/jmWxTaKSJVwrP8bPVN+LXTxVZbM1MKtTzFC/QxEJues9UZn2sluYH36T6//b3U7vwTyy4YyETv/9+itOmofnzscmT2yWeO+VvXn46y9diES1ahI0f3+VeyEtKt1/TdNwVW9/Oz559nTuefT964QVspZU64ii9D/Ky2qX3fHZPZ/Y1Nbmkdpl97RSLfu9n+/Lxlrvfu0Pd7Mu/C/qDFft2THfhsu09xVPOtu7szcmEDyjd/HZIMufp/VkaT2kc6Zjq2l3aiwxTapex09Y/skvyB9x//H9Th/xhpyI9EEEQBEEQdKbSPBBRgAiCIAiCCqcS5byjABEEQRAEo4DqCpu5qcLMqXw0QBnvJA72VBLCyoTAPtH7kX2KO+S8gyAIxjjCuiwjSXgg+s8O2Y8ByHh/Lo0wQdJqwG2SXjOzmwbNuiAIgmBMUmnzQFSUB0JjWMa7FDN7Bvg5cFiZfAg57yAIgqCdHuS8R4yKKkAkxqqMdzkeSudZSsh5B0EQBJ2oknVZRpJKbMIYczLePWB0VgXNxzd0ct7LdB1vHgRBEFQ21dGE0StjUca7OzYGHimzfWjlvCeEnHcQBMFoQt0sI0klFiDGoox3F1KTxBeBM/po+xxCzjsIguCdiaC6YF2WkaQSmzDGlIx3CedIWoh7K5qBw83s7r7YHnLeQRAE72RGfthmKZVYgBhTMt6543boaX9J2JDzDoIgCDox0p0mS6nEAkQQBEEQBDl8GGcUILolZLyDIAiCoDyV5oEIOe93ILNmLm9zn76kXSpYJVLQ7RLGOdqlndtaoaa2PZxaW7Ha2mGxu0fKyIR3kbNuae4kRZ7JJLdL7BaLqLm5Qw65nPR2KeVkvstJiXd3TOm2/PFQPo7SNLN4smMyGeJ8vqT/evNNbMpyHXHnj6nK1SfyEsfZvhKp4U6y5ckutbai117Dpk512fHGxX6/FJOMeFsram6m8OhjtG2yUUc8eTnxdF5qbe2QEs/sKBTQm2+il+dRXG/drnaogN6ej956E1t+msvVT57cvp3qKqipxWpqPT8WLfLZeFSAdG9YTS1akmTTkzx2ZmMniefsdyaP3dZK4dlnsVVWaT9fLWny/wsXQE2NPyvZfdYwjuKx51P1rb3Ra69RXGnlzte5N3nqvshXl4bP3yf548rtyygNXypTnaTirb6+Iy+g0/PWiXJx9LQ/n37ps1Mujvy1ySj3nGTxZfd9T+dc+rs3yoUtlVbvLu3cvuqando740+rm2hXb/n5LkltfdvJIecdBEEQBEF5ROV5IKIAEQRBEASjgOgDEQRBEARBvwkPRBAEQRAE/UOgCitAVOJMlCOOpJtzv+/vx3FzJD2V1DLvl/RImgwqUxpdmLbfl5Q2/yZpxlLaeqCkC9LvuUnvIwiCIBhTGFWFrstIEgWI8uyQ/Ui6E/3hczm9ip2BE9K01QD3pH0bJ6XN+4CTB8HeIAiCYAyTzQNRuvTpWGlfSY9KejIJM3YX7oNpxuc+MewFiFQTnyPpWkmPSbpUUn3a9yVJd0p6SNK9ktZN2+dKOj7te1LSbmn7rFSLf1jSvyRtKmm2pCck3SbpVkkFST+W9G9JD0o6Oh1bLelsSXdIelrSnySNk3RG2n9P+m/p/yRJV0j6j6QHJO3a27ma2TzgCbqZ1RKfkvtdZfJor5QHD6f8qUu2nZPy5QFJn+tv3gdBEASjl4HIeUuaCfwI2A7YCDg4Jy6ZD7cCcBL90OgaKQ/ElsCRuFR2DfAlScsAHwV2NLMNgKuBQ3PHzDezrYBvACekbb8Arkm1+a8Bx6ftawKfMbPtgYOAWjPbBNgU2FrSB4FtgFYz2xrXw5gIfMDMDgMws81KbP4+8IKZrQt8DDixt5OUtAmwNnBvmX21wL7AP0u2T0/n9YF0XguAvYDvAA+b2abJ9kMlbdibDSnOoyS9mC0LFzb25bAgCIKggqgqFLssfWAX4EYze93MFgG/x78ppZyDf+f6zEh1orzVzB4HkHQRcIiZnSRpP2AfSWsBu+IiVxl/Sf/vB6ak3zvjip2Y2S3ALakPwKtm9lQKsxuwsaQd0/p4YAMzO1HSW5IOwwsy6wATerB5Z2C/lNZTuBR3OTLBrCpciOtgM8v6JmyW61NRC9wNfLvk+PcA/0x6GJjZ51M+3QOMl3RgCrcMvQuKkeI4BTglW581c/nK6okTBEEQ9MoAO1HOwEUqM14Gtugcr74M/Bu4sz8Rj1QBIq9UWcAlslcGbsVlqq/FTzL/kW5K/40OF0snxcvkllkALM5trgK+YWZ/SGGWAxol7YF7LE4BzgOWo2fXTWtKO0trXVxivK0k3OfSlNzluKcPolql6UzFvTRVuMrnvWn7NGA+SUY8CIIgGLtIdNdpcoKkF3Prp6RKY0YBOsl4Cmh3XUh6F+5V3xno14yWI9WEsa2kmZIKuAfhemAz/IP8M+BfwB74R7Mn5pBUMCVtB/ymTJibgEMk1Ugah0uEvw/YCbjCzC4A3sQ7TmbptUkqLVzNIX2sJa0O/J1+tBX1g7uBLVJTBnhTycfTeRwmZ3m8tLjuEKQfBEEQVCAqWJcFWGhms3LLKSWHvQismFufTmePxMfT/nvwyvsMSZ2a1rtjpAoQLwEXAP8B5gFn4YUIpR6g/wYeB1brJZ7DgT1Ts8BPgAPKhPkV8Bje9HEfcJWZXQWcDewr6TG8TegfufSuBB6UND4Xz3HAapIeAH6HewM6eUAGAzN7Gfgy8FdJD+HX6Ey8baoGeAi4Dfihmd0/2OkHQRAElckA+0DcAOwiaVr6pn0c+Gu208yONbO10sjB3YGXzGybvkQ8Uk0Y/zOz95VsW4h7BrpgZrNzv+cCs9PvF4EPlDkkH74FOKJMnA/RzegIM/tEblVp23ySt6M7emqe6I/SqJn9EfhjyeYW4NNlwl6AF8Y65VMQBEEwlrAB9YEws/9K+g5wM14JPcfM7pZ0LXCMmd0zUItiJsogCIIgqHAEVFUNrP+7mV0KXFqybfcy4eaSq4D3xrAXIPpTEw+GjnYJ60IBMtnkTGa2UEBNTdDSAnV1Li27cIHLQNfWdsgnQ4c8cbHYcXyKo6zUdcl+laSdSYvn4+oky10afyYpnv1P8uSWT7NYRMXW9t9Z/NlxmZQ3gP73P5g5syNvcnGUO48uaWV2l0oPZ/GX5lNe3je/PZPQLidXnEkAt7V2jq+cjLcVO8ld25TlOkkNt0su5+3O2abGRdiEiZ0lvROdpLxVgKoCLFqETZvm0tfgEt7pvDGXKLaGaorr+dxqalyMNYxrt0OLFmHjx3u4dI3azyVJZtukSR3nAZ2uH1bEJk6EujpPO92fWWOt1dWjYhEtafL8aGjolJ8UPK32+y2T+K6u7sirdD+1y35Xe76oWKS46qod19uK/ny0tfo55c7DxtdCSzNVR3zEs3rGjK75XyqlnkclkvEpXCZD3ilcXqrbip2k2ztJqJeTzc6nnbenraP1VsXWdilvtbZ6b730TOffFdmznt07alzk+V/yXKm5Caqrc89J5/eEljS5JHu1ny8tLVhDQ+49UeaZzd432Xsve3c0N0MhvTeam/1658JbdTVq7XhGsvum/RzydhVLng1K3otZmLRYbS1avLD9GcneZe3Ht7W6v6A9YypvKuvwQARBEATBKKAwQA/EUBEFiCAIgiAYBYQHIgiCIAiCfhMeiCAIgiAI+k2leSDGrBqnBijJ3c80NpN0zlDE3U875iYRsXZp7yAIgmDsIEGhuusykoxlD8QO2Y8BSHL3iTR+NlQxgyAIgiFnTHggxrIkt6SPp/jul+unb5u2ry/pHyn92yStmuVD2j9H0okpzNxM9CpN2X1dOu+5kn6Yth+YjnlQ0kklNpS1U9IuKZ5/S7pGUn560iAIgmAMo2rrsowkS9OEMeYkuZM2xxeBDyevxY+Bb6bdlwA/MrMN8Wmwv14mT8ab2XuAPYGT07Z9gN+m834XcHgSyAJYGdjUzL7Wm51JBOyn6fw2AS4Hfl7Ghi4o5LyDIAhGN4JCVddlJFmaJowxJ8ltZkVJHwU+nOzfAWhNH++VzezPKdyFwIWSdiiJv9z5nYzPQ/51vABRl+wHV+ds6Yudkj6EzxB2syRIKqY9nGv+vELOOwiCYLRTYb0Wl8ac7iS578A9AdfiGg15xcq+SnJDeUnujZJnYCvg53JJ7ouBRbgk960l6ZWzuZMkt6Sq3PoEXAl0ZeAW4GcpvtLjaiWtXSb+JgAzy3+gT8G9MM8CPwBey9m4mPKUkw6vAm7P5cFmeMEqCIIgeAdQaR6IpSlAjEVJ7rXwWv2PcOGRPYGqJKT1vKT3p3B7pzB9YWfgJDP7Pd4sM4O+5UmpnffiTTfrpDBfx5VGgyAIgncChTLLCLI0TRiZJPfK+Af9LKAe+KJckrsJr8Vv0F0EicOBsyUdCjTSvST3GnjTQDVwuZldJekZ4HJJn8a9EOUkuTfPxXMccJZckruNrpLcD+CS33Nx78DfgO3lbQafAs6U9BPg9WTnGr2cG3hB43JJC4Dncc313mTKy9n5oqTPpLiqgP9RRp0zCIIgGIMIulSJR5ilMWfMSXKbWRup5p8jS/cRYPuSfS+ShouWSnmbWZbmZcBl3SR5QTd2lLXTzK4BrimzfXYuvrJxBkEQBKMX0aF3VilUWHkmCIIgCIIuCFTdUxe/4WdABYiQ5B7lWBFaW1FLi8sMA7Q0o6LBokUu4V1X59sbG6G2BsaPd6nZTIa2tdXlZlvbsPHjO0tUQ2d53kxuOydt2y5bWyKbnd9veSnl5maXKc7JgGeyvHlpcTU3d0gx5+S0M4nhbLtee83PCSg8/QzFNVeHBQsprrKK729u7nwumY3V1dDS7JLGeUnxTKYXPA/Hj2/Pq/b48pLlixZBfV2SSG6DqtQtpq2t/ZpkUssqFv06NDR0StuSFHv2SukkG7ykqcP2tjZUU4PV1lJ44Xls6lTPq5R32bm2yyPXuNS01dVDczNavNDTzMmlt4dvaqIw558Ud9nepdGXmdQh9ZyTjaa1tUNuvbXVJbyTlHe7ncVix7lnMtktLrGs1lZYsACbNMl/z5+PTZrk55qPJ7t36urb7W6/HxobUaHg93Zjo9/zdfW+vmSJ529OapliERYsQA0NHh5QQ4Pva21tzwcVi9DcnKTT2/y4hoYkx+x5SY0fk8l564UXsJkzYeJENG8eNmMGq087iSJtNGgSzSzGrMhELc9b9hITtTxNLKRAFUXaKForBVVTRQ0t1tj+e7JNYx7PUKCKgqoxikxgOZpYSIs1tsdfSwML7FXqtQzNLKaWcSy2N6nTBIwibbRQTR0t1ohUoJZxLLGFtNFCFTWM07I8NO+gdsnrwksvYdOmeT5XVaO33vQ8yL8XlixxqfXsetfktarTfdvU1C6h3n498/dbdm3nz4dJk/yeWG65juc+kyW3ztLi7bLixSJqXNzx3NXUdNzTWbptrVAsdLzn2mW/C9DS0v6sqqWl/T3Z/vxnz2QmC97WinLPa/79pvnz/Xf2LmlsbLcnewao75xFPQ4RGAHCAxEEQRAEo4Ax4YEIgiAIgmCYiT4QQRAEQRD0i7HSByIIgiAIgmGmUFkFiApziAwuGgRJ77xg1tKk30OYuWnq7gEj6YIkzjVb0tyliSsIgiCoTFStLstIMtY9EDtkP4ZK0ruv6QdBEATBgBGgMeKByGrmGpuS3u+X9Eg69uDc9jmZgFa+tt+N/aXpl82THvL3eEmPyyXFv5G2rSrprykP7pC0zUCvXxAEQTDKqC50XUaQpU19LEp61wEXAnunYxf1IR+62J9Pvw950okkErYT8G5gE2AvSaviOiHfSXnwKeDiMnof5eLrLOe9qKm3Q4IgCIKKQqi60GUZSZa2CWPMSXrj2h0vmdnDaf0iXEWzJ7rYn99pZm/3kifl4vutmWVf+i3kSqFbAeepw41VC6zUi21d5bxnLBdy3kEQBKMJMeY6UY45Se8Su0pty++r6SZM3v5svbc86c3G2fj5N2Xnn/JgS+C5HuIJgiAIxgoDbMKQtG9qDn9S0pfK7H9falq/X9KNklbpS7xLW4AYi5LeDwHTJG2S1vfN7Xsd2DD93rMP9mfp9zdP5gAfk1Sb+pVcg4uLPSnpgJTOtrjE91jvCBsEQRCAeyBKl16QNBNXhd4O2Ag4OF/JlVSLe9r3SRXTy4Gf98mcfp9AZzJJ7/8A83BJ7+vdJj0L/Bt4nN7lqw8H9pQPtfwJ3Ut6P4a7/u8DrjKzq4CzgX0lPQb8nvKS3uNz8RwHrCaXyv4dJZLeZtaMFzAukPRvoCF37I+Bz0u6D6jrg/1XAg/ihZ0+50k6r1vwAsK9wK/N7AG86eVASQ8CpwN7JXuDIAiCsYxAVYUuSx/YBbjRzF43s0X4d3Kv3P464AgzeyKt3wes3JeIl7b2OuYkvVOYW+nwNOS3/wtYL7fpBz3ZX5J+r3lSsv1Y4NiSbY8BO5YJe2ButWx8QRAEwSinvMdhgqQXc+unpH5vGTPwyn7Gy8AW2YqZLQCuAEjN+cfhHf17JdzfQRAEQVDxqLs+DwvNbFYPBxbI9anziCiWBpLUgPcnLAA/7ItFA27CMLM5ZrbDQI8PgiAIgqAfFApdl955EVgxtz6dzh4JJE3Gm9obgf+XPP69IrMY0fdOY9bM5e25Jy9yvfqWFqzBu3moWMQKBVQsonnz0P9eobjSLNTczDd2ep4TH9vKw7W2+rHZDVwsuoZ9oYCam7Ha2p4NUAGs2P3/fLiMbHt3YUuPyYfP1jObs2OLRVQsQmsrVlvbfv5UVZePuy+oAG2tnR/sLN3sd0ZVddmwSmEsbVeWvyVxqbW1PQzQfi2Uzqc9rZLtXY7LHa9W7w6UpafWVqy62q9rdWeHpYpFrKa2U161h0//89vK5lE6n/Yw+fzJbMzC584lb297OsnGLP8oFjvnQ+k5pvu3PQ4VUEtz+/ZO+ZflfTofCoUOe0vD5u6v/DVWayu0dlxvq6sHK6Lm5g5bc3nS3Xl2up9K8rPctW2/f7q7D7uLv/Rey11DtbayxqxfUs8EGnmbs9bagO88/iaTbRnmFp5mZnE2U6vG8ULbG7xaeIFJtjyTbFme1oPUqIEqaphs01ishSziTWoZRzOLWd82ZKEt4W0toECBFpawWG9TQx3NNFJNHR9eZj1eX1LkkcZXqaOOBZpPDbW00Mxb+h+iwOrFdXhTb7NQb1FDHTVWxwK9zuPPHoDV1Xd6T7XfL7n3AK2t/m4cP77zPVbs+l7I3pnt91z+HswoFtuvsZqbIcvLJUugrq7LsdkzVzVh9/Y2i1nLTbQXzvx8l/QLe5/83548EKkT5T/wZotF+IjAz5nZ3bkwN+P9C4+yfhQKogkjCIIgCEYDA5jK2sz+K+k7wM349APnmNndkq4FjgEm46MXlwPuS/MM/c/MuszSXEoUIIIgCIJgNFDd24wI5TGzS4FLS7btnlsd0AxVUYAIgiAIgkpHfZv3YTgZE3LeGgTZ7tzxq0o6t5cweSGtCyQd2Ev48/s6s9dAyAmFHSfpuKFKJwiCIBhBqqu6LiPImChAMLiy3asAqy9lHKXsyABdREEQBEEADGgmyiE1p7cAGtuy3cekNB6VdFbafAawmaRfpTBHpXN7QNLpZabGzsd3Qjrnx1KeTZf0XXwij2slTZO0saRb0vndJGmdMvF0yae0fR9J98jnK79E0sTerl8QBEEwBhBQVdV1GUH66oEYi7Ldk4Av4WqcGwC1abjLYcA9ZvYFSbukdLfA5xCvA7qOo/H41sBnqdzGzNYBngX2M7MT8DG3u+NaHecB+6fzOxqfg7yULvmUChqHAtsmL8ujeA/aIAiCYMyjimvC6GsnyjEn221m8yU9BNwN/Bk4KQ13WTMXbDe88HRvWq8HWnLnlo/vKUlfw4VK1ga2BeaWBFsbWAu4Sh3DcZaXVFuiaVEun76Ujr0zHVsDPN3D+bcj6SjgqGx90jLjewgdBEEQVCR9mzhq2OhrAaI72e5bgVNxieqX6fyR7qts9wLKy3b/IYVZDmiUy3YfD5yC1+KXo+d+BV1ku3FFzLZcmMzDsBvwt1QgylMFnGZmJ6c4JqU4p5SEQ9LmwGXAT3GRrtYy9lUBz2T9NOQlgZllBLHK5VMV8FszOzxtG09nQa9uSfOit8+NPmvm8jF7WBAEwWgia8KoIPpanBlzst3J8/EAcJ+ZHZ3OaUP8453FdROwv6SJcpGRy4HPdHNu2wE3m9lZwBPAB3P2ZXE+BkyWtEPavi8u1V3KHLrm0xxc8XN6CnMq3gQSBEEQvBOosE6UffVAZLLdK+Mf9LNwd/4X5RLVTbj89AbdRZA4HDhb0qH4nNvdyXavgTd9VAOXm9lVkp4BLpf0aXw6znKy3Zvn4jkOOEsu291GV9nuuZKuAP4taRHwXDrHGmCSpMvMbB9JGwJ34oWBOXgny3LThl4B/FHSkyk/7snZdxXupdkd+Dhwmly4ZBGpmaW3fDKzhyQdC9yQPBf/IdcsEQRBEIxl1DEFdoXQV2vGqmz3CXR08MyzQS9h5tJxTgfmtm9BGczsq8BX0+pTeL+KnuzqTh78XKDLHBVmlp3zcT3FGwRBEIxSxIh7HEqprOJMEARBEATlqbA+EL0WIMxsDrmJmoIgCIIgGAFG6SiMYCxhhubNwxoaKNx1P7b2bGz6dPTsXFh1NnrjdWzqVGzyZKiqwqzIjx+e5sdMnIgWLcLq6qC21iVwJ01qlzDuVcq7WOzoutsusZ1b72RnGUntbFt+Xyf54Y71qr/8neKuO7bLMxeefobi6qu1h1Em2dvQ0EnKnNYml2vOyfR2kuzNJJkzWea0z2WUkxx3qSR3JrOcSWsXixg5Ses8b72J3pwP05b3/c3NKEk969m52Kqz0ZtvghUpPP08xQ3WdVnoV17DVluVwr33U9xwfdpOvpKq7+yDXnkFq6+j8Ozz8Pp8bN3VYepU9Mbr6JXXKK40yyWFGxrQ/+Zhy0yi8MKLMGUyeuG/2JTJ2IwVUWMjeuVVqK8FFVjwg5uYcNpeLkudsWQJ1NS2yxFn51d44XmKM2d1lhTPJJKbmrpKkefk2tXS3Fmau1BA8+djEyd2SGw3NXn7cFU1tDaVlVQuHn8RbzxeS8MyLUzcaQraaC1s2vLQ0kLhlVdh0kSaz7yZ2i/viua9QnHN1f2eWWVlaG1FCxdiEyagV1+F8eM8v5qWsPjEGxn3nfehx56iuPnG7fekGhuxSctQ+M8TFNdeEz33vNs7fhy20kpo4QIKN9zO679/jcbGGlb87V5+Ltm9lJPe7iTHXSh0ki7Py2yXSq5Tsj+TGFexszx3J1n2LN1u5OazdJ6c9+WOcy0W2bn9OdgFLWnCxk1wefRO6e/aIRHe3Nwuad4ufW5F1LgYaxjXeX9Gui+y56lUlrtdSr5QaI+v/V5Sga2m/Y5GLWZycTma1EijFmMUWcJiphdX4pXCS0wrzmChFlBDLfP1epIDr2WB3mBZWwGAFpYw2abwWuEVmljIeFuWJi1iStH3L9ZC2tRKlVW3y5EXqGLdwmyebvsfi/U2+01dj7tfbeJpzaWZRjbSu3jAHgWglSUsY8vz4JslelcjPO9DKVGACIIgCIJKR4QHIgiCIAiCATDa+kAEQRAEQTDSqL1JtFLotzVJpOqPQ2FMLg1LglH3S3pE0pWSJg9lmkOBctLgkjaTdM4QpdMu460kJhYEQRCMIYT38yldRpCBFGcmU6IrMRSY2UZpWR94EfjWUKc5BLRLg5vZPWb2uRG2JwiCIBitVNhMlAMpQJwBzJB0dar5/iTbIekXkj4r6QJJZyYp6iclHZD2l5Xq7ok0hfREYF6ZfcdJ+o06JL6/lbZ3J/09Wy7LfX76f5ekVdMx2ye7HpJ0naQpkg6Uy3I/KOkkSVMl/V4uqX2vpA+nY2emY+6US5n/MJdXm0n6lZIsegq/vqR/pHhvy2woObdD5VLkj0o6VU7Z9IMgCIJ3AFXVXZcRZCAFiMOAl8zsI8D5uBpnQVIt8BHgtync6rhQ1Y7ATyXNoHup7i5kTRj4NNo740JV5dgYnxFzE1wJczO6kf5O4TcAzjCzd+NTVH8p2X45cFCSJv8HcEgKvzKwqZl9DTgNuDhJh+8KnCppGq658dskX/4u4HBJU8lJg5fYfAnwIzPbEDgb+HrJuW+My6dvneJbE9fa6C79IAiCYCwjVVwTxlKlbmbPSXoc/8Avg4tJLXCpBs5P01K/KOl2OlQvN1aJVDfl5bE3AvdaACfhBYgdS8MBl5nZwhT2KmCHJDXenfT3K2Z2T/p9P7B9smGemd2f0v5hiu9AvADQksLvBmyQ9TfAdTPWAU4GdpH0dfyDX5fOrQtyddGVzezPKa0LgQtLgu0EXGNmb6X1D6Vjr+wm/R5RFznvcb0dEgRBEFQaY3Aq6/NwVclJwM9z27tIgNONVHdPkZtZUdJvgM93E6Sc1PgedC/93ZQLn0mNl0p/T6RDsrtUanwnM3s9hVsReDWlMxv3LPwRL1B1d6VL06oFVjWzx3sIMyPZ3V36O3WTlp9kqZz3jKnR0TIIgmCUYSPcZFHKQJow8nLX4EqY2wFr4YqcGZ9I7farAFsBt9O9VHdv7Azc282+PSXVyUdpfAS4gZ6lv8vxOLC8pEys6yuUEfRK9n8JQNKawCN4QWNn4CQz+z3e3DAjpVeaV5nI1/OS3p827Q38qCSdW4Hd5TLiBVwldNse0g+CIAjGNOqYATe/jCADKc68DMyVdJuZbWdmTZJuA541s3zNtgH4V/r/BTN7VVJZqe5yiaT+D+A18fl09EkoZTFwG+4B+XGSvT6b8tLfN5aLIJ3DvsD5kuqAZ4H9gY+WBD0clwh/CPcwfNbMXpH0o5TeAuB5OqS87yVJg+MS6BmfAs6Ud0B9nRJZczO7T9LPgH/ihbyrzexqSfd0k343WRMEQRCMCbJhnBVEv60xsza8NgyApPF4h8hjS4L+PnkA8seWleouk0Z/voi3l8pY9yT9TWfp8Avw2j1mdjtd5bjb96cwLwFdRj6Y2WV038lzg9zvHVL4R/C+F91iZr8CflWyrbv0j8v9jtJEEATBWGSAHodUQf4e3m/uZ2b2i5L9GwHn4H0Zb8Mr/S2l8XQxZ0DWdCS6JV7jvsjMnl+auIIgCIIg6A75VNalS29HSTPxZvLtgI3w0YoblAS7GDjCzNZK66UjB8uytKMw7sI7KJZuP3Bp4u1H+scNRzpBEARBMKIMXExrF+DGXOf73wN7AQ+l9VWAcWb2jxT+AuCHwOm9mtS520LwTkDSY2bW6/DPIAiCoDKQ9C9gxTK7inRuTTgljbzLjvs2MN7MvpfWPwdsYWaHpPWtgZ+a2bZpfQ3g2pw3olsqq0dGMCxE4SEIgmB0YWabD/DQArlpAXBfRrEf+3uMOAiCIAiCscmLdPZcTMdneO7r/m6JAkQQBEEQjF1uwGdKnpZGTX4c+Gu208yeA5okbZc2HQhc15eIownjHUjNcivZzIN/1e3+U/fYrOz2PReeVnb7WWuMrrmsPv+3CT3u/+f09w6TJeW549JvjGj6/WXvVb850ib0i3Pqy04HM6Jst/1FI21Cv9hPfxhpE/rNj2aNPtmgz6w5Y6mH5ZvZfyV9B7gZH8Z5jpndLela4Jgk7bAfcE6ahfnfdJ5VuluiAPEOxJp7nD08CIIgGEOY2aXApSXbds/9fgDodx+LaMLoB5KWkXS6XPL7fkm3S3pPL8fMljQ3/b4gCXSVhjk/DaUJgiAIglFBFCD6SNKkuA54C9g4qYUeBfxJ0kpLGf2OdC++FQRBEAQVRxQg+s5OwErAsWbWCmBmd+O6FkVw2WxJ90p6IHkqem0ikvRdXHzrWkmfkHR3bt9eki6SdKCkKyXNkfSUpJ8pCWBI2kfSPckjcklqwwqCIAiCISUKEH1nI+B+M+s0PtbM/pY6qewCbIPraWwE1NG9BHn++BPwITO7A78DpkhaO+0+ADg//d4GV+5cD2+r+pikdYBDgW2TR+RR4JiBn2IQBEEQ9I3oRNl3ikBTD/t3A7akQ3a8HmgB/tLXBMzMJF0A7C/p58A6eM/ZA4CrzOx/AJIux4W5puMy6ncmh0QN8HRpvJKOwptbfL1uXF9NCoIgCIKyRAGi7/wL+JIk5WXLJX0fl++uAk4zs5PT9kn47F79HeN4ATAHeAW4JBUqAFpzYQpAW0rzt2Z2eEpzPO756ESa1rR9atPqiVNj/vIgCIJgqYgmjL5zO/Ay8IOsb4Ok9+KqZQ8BN+Geg4mSqoDLgc/0Me5WUmHOzF4EnsI9Br/JhdlN0iRJ9cA+wPV4QWNPSdNTmFOBowd8hkEQBEHQR8ID0UeSJ+AjeE3+IUkt+IiMj5jZXGCupA2BO3HPwBzgDGBWH6K/Cu9EubuZPQVcBhxgZs/mwryKN4dMAy41s78ASDoWuCF1qvwPuaaKIAiCIBgqogDRD5Ic6gE97D8BOKFk81xgdtp/YDfHfRX4KrQPF90BOLck2GPljjezc8uEDYIgCIIhJZowKohUeJgHjAeuGGFzgiAIgqBblOsPGLxDkPRYXtJb0lF5/fiSsF329RR+kO0cdekMl839pVLt6olKt7nS7YPRYWOe0WYvjE6bB4soQARIetHMyvbVKLevp/DDZVelpjNcNveXSrWrJyrd5kq3D0aHjXlGm70wOm0eLKIJIwiCIAiCfhMFiCAIgiAI+k0UIALITTLVx33D1d43GtOp1LbQSrWrJyrd5kq3D0aHjXlGm70wOm0eFKIPRBAEQRAE/SY8EEEQBEEQ9JsoQARBEARB0G+iAPEOIWlodLdvuTLbdpY0bWitguFI452EpNVH2ob+Imn2SNvQHZL2kNRFoC54Z5HTP4pvZo7IjHcAkrYEfiLpXWX2rQr8SdJ70voMSasBhwK7D6FNkrQucLWk9YcqnZTWO+I+l/Qx4NikyTIqkHQccISkZUbaljyS1kw/T8SfhYpE0vKSbpM0caRt6QuSVpJ0uKQZI21LX5G0FXA/gJkVR9aayuId8WJ9pyLp/ZKOAB4HxuEaG9m+90r6elr9G/AFSbsAL5rZM8AtwMaS1mGQkfRB4MtAE3AzcPhgp5HSkaRC6UOfhMcGGmfFPTOSjpV0MvBX4G1gpxE2qVck3SppO+A6fOr2XUbYpHbSPf9jSR/CtW8+l1O8rQjSh/iTQBGf/v7/RtikHpE0TdLmQAPwHiroeneHpI0kfd7M7gSmSdo/ba+4d8BIERkxtnkNl/huwwsJG2aeBmAx8DFgZeAaYDIwBbhP0rdxKfE6YNfBMib34W4B9sKVRf8ArCZp0NLJMKco6d2STpW0j6RxNsChR/nCSHqBZ27NARdIloYkGw+um3IkUA/8HVg/Sc1XHDmb/wqcZWZ3Ac8D75G08shZ1sm2l/B83Au4F7gP+NZI2dUNmwH7ABsCRwO7S9pgZE3qkfcCd5nZE8BtwObJA1nJbAK8V9J6wKeA0yG8EHmiADHGyF6C6WP3b/zjco6Z/Q5YBOycPqL/wmv/nwTmA1cCBwGHAMcDBtwErJcrdCyVXdmH28yuBx4APo7LlF/DILiJJRWSZ2XD3LajgF8CNwD7ARcNtN9FKozMknQJcA5wiaQdB1ogGSjpPGVmbek6PwZcCPzGzK7Cr+dOleTWzu5LM2tL//8PmCDpc8B5wDLAbiNkm7L8TLa9jd/7S/Bn4qvA/5O08UjYl5FddwAz+yPwBF6Tfwsv8P905KzrSmZvytvfAf+SdCx+r1YziJWTwSJXiAT4E/A08On0zrpP0qkpXHw7iQLEmCN7CeI1FIAD8ZffJsBvgVWAb0qqAX4IrIV/vHfBH+pd8I/j+Wb2W9xTsaOkcUtrl6Q6Sbumh+/7wObABnhtr1nSF5YmDWACbv9mkt6TzlH4R2AJfu7/wD+wvdLNS+J44O9mtiuwEvAtSROW0u5+YWZFM7PUd2TfdG0+A+wgaRvgcmAW8L7htKsnsvtS0m6SPpA2fwL4Oe6CvxPYSNJGI2CbpfzcTtJZkj6Lf5RvBnZMwc4Djhlu2zLSRzi77qumzecCawDbAb8Gpkv66EjZmCfz1qXC9ZS0+QA8D6vxAv16qRmrYsjdp6ub2Ru4p2yF5CE9APiypBVSZWJEPI+VRBQgxhjyXuN34B3TTgXWBo7AayizgfcDH8KbNHbBCwj7A3fhLvDDgdOAD6WX+RUpjg/30w6VrB8M3I5/1G4A1gQuAvYGWvGP3l6Slu/nKbeTao6L8ALQ5/AX114p7oNxD8Tv0v5e7c81V+wk6SPy3vjjgEZJtwAPp3RmljvnwSQft6RqSb/AP2rr4DW6bfBrd76Z3QM8BWyX+9iMKPLOuTfghdWtJV0NPITfCz/Dz6EFv++qh8GeqpL/XwV+gN+Tn8Br868BzySbT8CbhvYbatvKkQoO60i6CjhF0p/wQvGdwPbAxGTzd0bCvlLSB3aypDOAX0v6IvBf4AzgAjP7A7AAL/QOawG8JyR9QNK9wLcl/RF4Gff0fBC3/5fABVnwETGygogCxCimxN2GpJnAnsAeeM1ud+BTZnYW3sfhAPyD+gr+4fko/oD8E38JTQIeAz4CfAO4LHUg+g/wQh9tUr65Im0bD7wbL7ycn9L+IP7RmILXoO7Ha6J79uP8lUuzQd5h9F94k8iDZvY/vAZhZra3mT0IrA9U9eaCTC/sbST9Cvga3segGS+E/QA40MwOAdYFLk8FjkFvysjsLIl7XaDJzLbE2+s3BFY1s/PTMQcDFwPLAisMtk29UXpfJrYFrjCzj+AFrlnAdODzeOFuRbzGP40htDnXBNCW/5/4Nv4MrJxsmZOWNXGP3nfwppYhp8yzXQCOBS40sz3xa/51/F6fhHeQvhYwdXSOHjbK2LscXsC9H+/geRD+3BwF7CZpU9wj+m5GqCmjjM2zcDsPwJutPoLn621ADV4B+Qqwq6TNoy9ETGU96kkf5+3wD+d44DK8SeBD+EdkCfAs3vv5Snx0xaa4B+J04BfAVKAK71Q5DtjWzI6W9BawS6rR9teuVfDe1o8CC4E/ArfiL+If4rXP5fAX8ol4U8urZvZaf9PKpXkT7sp9AG8iOQe4EfeuPITXGLYDvmpmfyo5tir/MUn2/xE4Ca8Z74e3iz+E11I3Amrx/LvOzM4eqN19QT5yZR28xvkG/uF4Hm+O+SbefFONd3y9Bb+eE5NXZkSQdDjwJn49NsE/eAuAu4Hv4c0DtwA/BtY3s+1Kr8MQ2rYv7nl7BPeM7YcXzO4Dvot7447EP3oHAy+Z2a+H2q4ydm6GFxIb8M6SNwCH4YX+U/Fna1vgs/hz9Bowz8wWDaON7YVnSTPN7L/yuT1OxAsPJ+IVlR+Z2VOSPg8cY2Yz5SNJ/m5mrw+XvSW215M6eAJb4PdkG/ABvAB0JZ7He+GVnsOA5c3s4ZGwt+Iws1hG6YK/AB/ES/LX4U0St+AjGw7E3a8PAP/D2+vfxF8w2+EvxRPwF+jP8cKD8HbVb6T4J/aSvsqt4x0xn8Vd0w8BM/AP329zYY8BfpJ+79nH8y3k08Q/Sj/Jjsd7Sh+ffv8IL6jU47W1nfEPw5RezmFK+r8HcE0u3bXw2ugU/IX4+5T3JwKFIbq+wgsEZ+F9N76Je3B2BK4HjsuFvSqXD1t1d37DdF+ujBfcrsJr9T/BmwVuAz6cwkzDC5RZfq+Rv85DbN9HgTvw4a5H4DX4H+AFxtoUZi/g0vR7fE/3zBDZuGm6v67HCzgrA8+l+2B6CvM54M94QfZIYOpw5WEZe9cErk7PyBXAlnhh7AFg5xTmCOD76fetwIrDfW+W2Lwv/o78K/ArvHl1AV5paEhhfpvu4ZnpnqgZzvug0pcRNyCWPl6oMh9r4FLg/Wl9Yvp/Mt7+fRde47sXd8XVpwflBdwzsBfehn8yXqO+Kn0Ubwc27qNNK6X/1SXbrwC2T78npP/74G2JmwCfxj0TOwwwL7bDC0gfxgtCj6QX7hHA0SnMpngN4nHgkyXHV5WJcy/g3ylPP51e2A/nznFqeplnL8AJwArdXZ9BvO6TcU/S8rltBdyVehv+MfwRXkBbZ6Tv02Tfe4Bfl2xbFy803oLXmH+f7pPx2fVgED966fqsl8VJ54LnucBh+Xs33ZdX44Xvy/EPy26lz9wQ5FVtN9vPAg5OvzdL/w/FC+QTgNVwL+LHKuB6C+9b9B28MLMl7l08BTg5F+4mYI+RtjfZsmy6B9dL67PT/z+k+2OtdJ/eCbx7pO2t1GXIOysFA0c+Ln4TvD221BW9Nu5VuDu1jy6WdAHez+BeYGPgC3gh4s94O+PauEvuAPwBuRjYGm/32xlY1vroppW0G97mWjCz1syNKWklfAioUhvjYkl74bWnM/CX4CrAZ83sjn7mRzXu1dgMLyC14f0TJqZzmAisIenHZnavpB8AK5vZLbk4ROr8lPt9AP4hPgSvlR6Ae21+i3co/RheA3kN2Da1f/4LWJjy3iy9fQZCyp8/mVlrZlcuvjVxD8obkqpTmEPSuZ+Ce51q8I/dWwO1oZ/21uFDLp8FHrGuTQ5bAsunsOOARrzA8xu8k+vngHvM7MT8QTZIbcqSvowXLF8GXpH0XTN7TlKNmbXgNfstgDPSvbs9/nwch39Y1sL7uDSV2Deo7b2SdgCOlrRbsiu7J2vwguPCFPQ++eywfwO2oqPz7G/NOyNm8Q1JP5w+xL8y3mT2azNrBu6SNBUvkO+UOs+uhL8v/pqLb8ibq3pIow0fwZL1aXlR0lp43u6GV6yWBU4zsweG0sZRzUiXYGLpuuAP4/F458U/4h/6zXP7s6aCh/AZHT+Dtyu/BjyV9l2O18iXT/EdghdEHgGWS2G+C3yhv7blft9HcqPTUZPLaiOfBSanbd/D2zw7Hd/XdHLbpuIegvH5fEi/N8BrD/dSpiaOe2DyeViX+30uXoCYDVyC97I+Ha9F3Yz3K3kUd3meSqoRDtK13h6fTfAM4KOl55XWHwC+mVv/P+Aj6XfepdqnvF1Kew9K9vwG93T9EtgmbwvezLMY2DR33GV0uN6rhsJmvNPwnHQNV8ILXxfgE1blw+2Qtn8hrX8On0Oj13twkOws5H4/AhxQsn88XlA+OPcMfQs4Nf2ejBf2O70PhvCaizLeoZLn7zngfbn1zwNn4k1wmwBrDZe9Ze4x5Z+TtG0q3lRxaG7b+cBB6feKJeHf8c0VZfN5pA2IpeSCeEedl/B240lp29/INSvQ0U57Ot5Jcl76sD2UXuofxof1XYa37R2Jj67YCf8An4e3Qf4dWLOPdhVKf+PNBK3Zyyxn164pnV/gozkeA7YYYH58FP9wr4X33H+5xJb9cg/9GsA9wKxS2/FmiX+l3wenvPppinc67hL+Pl6jPwgviOyTjt8HrxV+GG+DXmUQr/e2eFPJJ4HX8c5bWbNPXS6fH8SbAC5O5zi7u+szRPflRvjH+Wpgg7RtE7z55B9l7s1v4C7ro/Gmnytw93ZW+NVgvpTxwt7dwCUl27+NF85qcvdt5kF5GJ8s6F7gPZld+f+DnIeipFCCN509REehPkv/E3gn4J/gheMbgL1LwhSGws4e7F8FrwxsQUcfgewe/QJeGHpXCnc1qXk1f48Ow326bcn6/rgn5Bzg8JJ9n8QrHd/Fm3nvJDWr5vJ4yAvlo3kZcQNiKbkgPjvjm7n199BRoMhqnZvhw4zOxIdF3Y/P6LgFPhfAv1K4dfGawCnAhmnbOLx2tnMf7akrWf9Yeuiy2vJvcPd7p4cNHy75ZfwjvXof02pvr8ZrCNfhhZwf4CMONsY9MifkjvkJsHtu/Urgvbl4shfByuklcitea94BL0idmNI6GrgyhT0YH+Vwelr/Vlr/O7DuIF9v4X1DNgO+mM7vV2XCbUSayGaE7suvphfsMpnd6f9aeAHhyDL3wOZ4x889hsimerzj7NZp/aPpnsn3Tfk9qb9DmeOnk/NKDXH+5WvrK+CF1S1y9+yPSvJV6Xn+Gf4xPmSYr/c2dC6ofxX/EH8JrxxcVua8TsRHQd0LfGcE7tGsgFOf1nfGC/xbp3txjZLw1XiT0MnpPtl2uG0e7cuIGxBLmYvSMdnRaelh/HJ6kTyCD888Evc07Js7ZgFee61LH8mj0vYBlaDx2uI3gC3T+jLp5XANXmi5Fq8l1eNekOxlWNPPdBqAGbn1cen/tsAvctu/nD5ga+P9Ew7DC1D/wl3VBbw29xzuqci//LKX8u54M8+Oaf19eGFiP9zL8bf0sn6Yzu73cfSxENTDeZatKaZ8PZ+Oj+A5eJPGKXR0nuty7ECv60DtTtf5Wtw7Mz63vxYvpF5AR220u3MdzOaKz+AftIvxCX6+ku6Nn+FNPB/HPTVnUjKKYqhtK4l32/Q/a+I7nI4moEvxidRWxfuTZB361J1d3eXtINu8DN5BdzNgZtr2Q9yLs1PK91Po8DbV5o4dT/KcDqO9HwM+keUz3lwrvOCfdarOmtc2K7WNXCdwBtkzNtaXETcgljIXxSdXWYB38gLvw/ALfF72v6Rtv8c/qlmN8FBcSRO8CeHx3L4+uw3xD/FxeE/vFdMD2YA3D/wthdked7uej7d3Hwk8MYDznJJeRMekB3cbfDTIhBTnrSlc9vC/gHfQ2xj/aH2fzn0AZpa8DGrwds7T8cLC5JSP5+bO9WspzLbA/6Orm3OpPyzl4ij5SFyPf0z+jruq90/rCylpqig9dojuv9I+GJln6JPAX+j40GXbvwr8oa/xLaVtG+FNKdfQ0ZSyB958MStdx7l4YXOV4cqzbmytT/fsenjBflK6vwt4oeFOvAllEl7ouay7vOvPMzzQa06uSQQviBXxAtgy6TzuwDtkb4UPwz2ph/iGrXklvTduTO+EbdPztA9eYXg8F24y7j19d3c2D/c9MtqXmImywpDPIf8A3ndhSppo5Thc+voVYOU0qdCpeJv8bAAz+yVQkPQBM/sb/oE/K+3rc+/2FHYT3H3/MnA2XutsBM5Ooy/eS0eP9c+Y2anAJElb9/M838A7is7A206nAy+Y2UJ8BARysaqWdNgtQLOZ3WdmZ5nZsWbWkqZ2lpn91zpGMmyOd6arxgtTx+Mek8uAGZLel871VvwFXmNmV5nZ6en4TuJP/UU5pU5zHZBpkn4iaX9JM8zM5Fod4F6Pj+Lt97uY2YV4x77dzWxuadyW3nZDQeksoiXpXo6PBvqYpMm5+2ohXqsuyyDbuzP+Yd7PzB5K8f8Jv4Yr4B6p3wCPmtlz0PM5DQW5e6cJ/2A9TMcHeR7eNHEQPhPrPHxI8vfxGRq3zceV2d2fZ3gg9ppTBCamkSDP417O280nI7sCaDOzD5nPTvsh/DqUxTp0MIbC3kLJTLLj8blRDsAn2Po17oW4D3hJ0vEp3IeTbWXv1aHM4zHLSJdgYvGFkp7OeAn/Ibz3/wN42/j1eM3877hX4pd4H4Pl0zF51/JaJLfeANJeE/d2rI7Xhs/CCxX1+Ed8uxTuerwW1d6pqp/nvFw6j5NwT8B1pLHvaf/heJPEx/F24hsoMxEUJTUHvFB1KfDv3LZP44WurfDRKX/L21Ea51Jey61Ik1Cl9Z3xfio/wttbDywJvx9p0qK0Pqwdt8iNoMndez9J135GSZit8NreWincL/AX9aCNTOnuHk3/25tScvtOwGvyy6b19VOYzwxzPua9ShPwpq8TgBfp6OjbkO7DvdL6lWn/FpS00Q+DvcuXrB+LN5N+Cy/UZx18Z+AeyCdwT8kP8YL/R4fT3mRj/j21Du7dmYA3Yf0d7wxdixcivof3i7g2vVtuIr27YhmcJTwQFYI5RUkzJZ2DN0lcgj8kG+LTvb4fb7p4Af8I/hj/yGdxLMr9fsJcTbNHsrHdKe3pkqaa2ZN4B8PTzWvDNbjXYT28s+YGac6JNvzFeLeZNfbnfFMt51Xc/fh7vL11V+CDkq6WtLa5N+AreJPFHPPa+Rs95NtPJH0KrxFfDjyhDinyG/BayiL8ZfKSpFXT+b9eGmd/ziV3Tpum4+8EPiVpetq1Ll6g+LaZfdXMLsh5H8Cnpt5jab0eA7R5K7xwipmZpJ3xgmEbHfolWPLspHO7H/fk3IyPHNnMBjDdeR9saxcrSrYVzGv1F+H59Q25cNwK+JDMt1Lwp/GPxoCF2fppZye9kjQPxX34DK+P4z38T0vXtxkfAdKUptOeiFcK7jOzp9LxQy7SJOk04EBJEyVNkHQR/iH+DP6cfMHMbse9EJ9Ntu2Heyam4CMsrhxqO0tJz/oEuVDgVfg78iAzOw33Ph1rPhfF+XifsKlmtjvwFTPbycxuG26bxzQjXYKJpWPB25jvxYeenZ2Ww/CH5I8pTA0+1PNWUofDQUi3Cn/Z/TP9/yJe67gHfwi3wTv3fQJ3tc+hj72s6dqevgkdtdqvAw+n39/FJ5nZGq+1/RP4aze2lnYs+yjupTkGd1//EW///D7eETTrQ3Edqf1+iK7f74Hvpd+rAcX0+2Tg2+l3NV4ruq7k2AENc10KW/OdRCfRMUfDl4AflITN8i/rNDc9XaNV8tdlkO0r128kX/s8B68t79LN/rIzPA5Dvv6/9Hyske6B2Wn7bXRM3X4IPix3SO/Hcnmano/t03N9Ae75WA73Ki2DN03chBfStsU9Tf8hqX6WXo/S53sIbC43/8QJdIyQOhb34KyEN4NejxfQ3oVXPg7o7b6KZSmuz0gb8E5c6Oh8lv3/UPr/azqmpv4TXmveF3eFLqZjwp6J9KJT0Zf0c+tH0DFF82/wgsN6eI3jnrT9l7jHo54+jLSgfNPClumluWdu23N4e//09FE4IG2fTG7IZLkXFV6Qehdegzskt/10vPnjoykP/4QXSM6l8wRSS91pKr2UM/f6Jng79xNp/Y70gtss5elqaftyeGGjfgTvwQEVdspc00H7iNC/ppTN8I/eej19FAbjGvcWL94X6KT0+5ukSb/oKHhthHtJFuFNgGvQeajpcHY4/BreryF7To7GP75r4x2Nv4XPO/IHvBAxFfcAfqIkniHvcEjnJqE16JgX5/v4MOxPpt83Az9P+w7AR2n9mAE0q8bSz2s00ga8kxc6ChD/wGslO+NtzEfj49uPwzsTTk7bfrcUaa1OGr6Y1lehY7z08enDcSH+gV877Z+cHs7vppf57D6kswKdhZFWw8eH74YXKr6dHu510/6P4m5w4TWGH6YXcqfJckpe2DPxgs7VePPAX/MvONxl/DBe2PkO3gHsg0Nx7XLr1fhogDuAW9K2NfACxbJ4/4fL8D4Dj5KG2Q7z/TaohZ3B/IjQz34jKczJ+DDOacOUf9WU8RThBfyn0r28N3BvyTH34l6eD5Dr45NdkyG2udx9+g+8qWIdvKnvQ+kc/kWasyM9M1eRxM+G+T7NP+ur4R7Fv+Ajb7bH30sb4n2zVsCb2Yp0TLS1Zkl8MSxzqK7VSBvwTllKHooqklRwWv8iPpObcLf+eWn7Z9OH8NSlSLcuvTROxJsnNsSbRB7CCycz6Og89dl0zHp47W4y7jX4UB/TqsILPdem9cPSy3N/fG6LS/F29YuB/VOYdfF24aMo49koybds9rtP4e3cmbfma3ibc/ZxXIWOJp/N8REth5bGN0jX9UO4ANnPcUlqcG/RB9Lv84Cr0u93400qa4/UvZfWK6aww9I1payETzI25DXNlGd74U1lU/CC1tF0TDX9UeCh9PvRdE9OxisGVwzn9e7G/vfQMdvmjsCT+Lvh23QMYz4Dbza9PT2vw1IwK3ef0iGwdgbwqfT7XrwwMSPZeUS6Lv+HNxHt0l18sQzNEp0oh5hcx7hiWm/A+zFsBxwuaQu87XFF87t+KvC2pCPwj+oJ+MtoIGmvnOIYh9coiviojfvwj9ksvBngBbxPRW06dH/gJTN708zuMrM/9yU9885/lwNFSXviQ08/jDdTrAY8Zz6E6hbg/6WOmD/Fx2+fZx2CQoVcnFm+fQO4RdIx6Tz+AOyZwpwEzAfOk3Q63g56c9r3L7wN96V8fAMhsysNI6uS9F28s+vX8Dkzsuv0TbzJBzM7CPiwpJ3N7AEz+4mZPZ7iGPLOcsmGLA8/JOl2fO6NJ81sa2DzNPT3KbxN/Ddm9m28wPk83tx0yhCa921J30u/lyNdJ3yehMXJ7mpJq+AeJ8ysOXWofMHMjrZ+duDtL2mYYyvu6bofb9p7A/d0vTt1xL0SeEbSV/DC2Rr4Pbo7/oEbFiRNlTQr/S5IWkHSNXj/oH0l/QKfeOtWvPB1Ju5dXBNv4nsV76vxcTN7RYkhtlnQ6T49EPhjGq5uwPKS/oH3w/gS/l55Cp92/gW88+cHzOyGfLxL86wHfWSkSzBjdaFkaGDadhbeXDAVb7+bh3siTsA9AA14p6Zf4i+fPulU9GDDTLy54Ey8UHAkORltfNTDX/COix/Be67fntIeUO0Db3L4LP6CehZ3l16Nd8ScRpqmGa/xnE6a6TJ3bJf58pPdV6W82ROvJb8fb8bYI4WZhbs3vw+sWnJ89UDOJW9X7ne+XfbXyY4Z+AQ7fydJh+ND3u7Da61rl8Q3HLPztfezwT1D303Xdyu8dnl+2n848GzuuCIl05wzyG30VHBTSg82z8I9Mn9Idi2HT6B1Lkl4CfckvkKatTSzfbiueUrnM8Avc+v7kyZHwwuId+CVh3XwESKr4V6SM8nNIDkc+UrXpskq3Kswl9QMik8QdhcdnVEzzYpqfLju+sN5H8RScg1H2oCxtqSHYD86miHWwl3oO+H9AL6BewOWw93b++GTzCwGdkrHDOiDR4lYT1r/K15i3wN3EZ+Nf5AzF+FZ+JTZE/E+A7MGeu65dGekOBeQOmyl7bvirvHSkRkq8zKZlm3DP8zblRzzXrzZ50KS+FTJ/qX+6JWx81B8eNiBeD+RDdLL+Pt44eYkvOlnbdwj8RVy81YMx0eECi7slL7gqaCmlF7snoB7tL6Z8vAKvPBbg3fSPTg9P1/B2+k/VnL8sPVzSPfekylP18YLOTfjFYNf45WX7XBtmJ/S0dzYkItjWPsM4IWzL+BNj/vhI1Syd+FncDG+jfF+XH+iREGYYRDpiqX8Ek0Yg0hyq7aROgVK+hVeQ1mIvwxn4N4F4R/Y+Xhp+pfAM7hbFEtj7vuLOW2SpqTx/DPxwsKp+MO3CB+itQ7eixm88LI6XvtoMrMXB5J2CS/juhIPA1tK+j9Jv8Rfuldbeuqh8xh68zHe49IY9Vtwz8wsvHPXp3PH7Ih/7F5K57RyPvHkUh7wTHjJa1vIjk8u9DPx2vupeK39CHz42D74hDx30+FO3RX4n5mdZmZv5Fy0A7KnrzanNDI38KF4k86BktbG8/5/eHPR8Xhb/sFp33txb85NZvZ4SXyDZrNVdlNKT/MvrIVPC/9jM7seb6paCx8BdBLe4fNx/Dna28z+kD/YhnBej3SfZvlawCsJtfiMrY/j75Qa4MdmdghewTkZr1Qch78fMLPG0vkshshelawfiTc57owX0P+LFxKy5snzcY/ZkXjB7QEz+1U+jvSsR3PFSDDSJZixsFC+ZvVlvO19+7Tt83jtfz28E9ZpeE1rj7S/XyJUubT2JikK4gWTw+nQqXga7zy1Bx01UOHNGieTascMQY0D79fxLbwmtBNe2ymV2S6t4U/BXxbfwF3bV+Mv6C3xAsUHU7ifAMdleT2E13U67k5vwD9kG6ZzugdvklmWDvGmS3FX6449neMQ2FjquanG3dEXJnvvxQuok9M5/DKFOyLZ+2W68VoM5rNBBTallMTdrV5JsvsBOjrtNuAdga9J6xOAdYbDzm5sn40XAC9Kv5cnTbCEF67PTvs2S9svTucwZNLl3dynpc/7uGTPKlm+pv/vT/fsfrn8rKezSFd4HCpgCQ/EUlJSA9hZ0qV4O91zeA18xxT0Yvyl+GGgFa/FfAN4ONWYW7pE3nvaE3EX+rfSpnEpvU+Z2WfwD+038TbFeWnfDnjN+WFgSUp70Gsc5vPn35bSucPMvm5mL2adB/PpSnqfpM/htbrJeOFmIzy/VsCbM84AviHpNrzD10UpndbB6OSVdXbNrR+Eu6Ob8HbiTfA2+PFmthnu3TkYd7EvBJ4ysy3N7OZ0/JDX5rL4rWMW0WPx2uZ8vOC1O94J7eL0vwF4K92j+wLfMrOf5+7fQbsXcudfzHmE2nA39Wm4V6EBmCXpk+azjrZIuk/SXvgw3xtz8S2VV6kbG3vVK0lBC3iB/Nh0TDU+U6dJWsvMFprZYznP1ZDpQJQ5hw3wwut1eL+jFXDF2auAT5vZ83gHyifwwtszZvYpM2vMbBxqWzNvnpmZpC0kHSXv4N2Md4ScnIK2SNoYf/YfBfaStEzKzyYzm5+9Pyw8DhWBhuk+H1NImoF/1B41nzYVSUfhwwsvwV841+Htdu/DJ5l5UNJH8La+H5vZLUuRfv7juz3ukv4xXjD4jZltIu853pY+uOfibfPfxduYDzGzZwaafj/sLOQf9PxHJa2Pwz0oB+OS4Dfi3pMFeG3p7/g8DjV4v4O3gXeZ2YPp+EH54JXk54pm9rKkbwNfNbOpafsluJv6/1Kh5Ux8VMmJJXFV2RBPRV2aRirsfBEv4PwZb2aZjQ8fPFrSx9P6bbg3qN7MjskdXxisF3LpNUlNKZvjHqQ7cPd6AR/2+Bd8dtONcff12/j9cKGlKcuHqoArn8L7u2b24bS+M15wvS7Z+JCZXZA/L9y13prO5zR8ePVwFRTK5oOkPXD3/gH4PBM1eEfOh3EPxCbAn83sJEl1ZrYkHTfk92mJnZOSjfvgBZwleKVgC2AtM/tsCncsHZ2vp5nZHcNlY9B/ogDRD1It9Tj85fcy3uZ9HP7hvhQ4xnyInlJpe0u8bW+ymX09xbGDmc0ZBFvq8JfYynhzwRvAx/AP8NctDb2UD3tsM7MTJI0zs8VLm/YAbC0tSFThfUKWw2tzn8PH9B+J154/jTdXPCzpCryD2imWG6Y12C9ASRvhtfZWPC+/jn/0vm9mF0naKdm1Cl77HI/X8J7OxTEkH7sSOyuysJM+sO01w1RTPx3Pp5PwGvxdeCH2m3ifgkPlw5X3xQvevxgKb0iJnZua2b3p9yTcbT5P0pfw2SGPzoWtMVd7bf+PNw/IzP6bwgxa4asHm7tcJ3X2fN6MNxHchXsgpuNNAPfgglIXmPfRyQrxNpT3aZnnvRr31K1oZtumisOX8aG6v8Cb236Pe/s+DRxpyZMXVDbRhNFH0gf7V3jv+q3wdrpzgVfTw70CSS4WqJG0Da4i+QKwmqR3AQyk8KDO0rUZu+AFkw/i7fRL8OGTRwK/kjenHIaX+G9MaQ974SGlm3+ZbIm3fRv+wtsLnzzoGbzws2ra92VJj+G1qY9Z1zHeA/7wqWtzRT1eoLkS1zL4ZfpAHI83M2FmN+FzavwUnzZ3m3zhIYUZ8tJ4KphuJOkG4Hx5c8SFeNNE1tH0XDwfr5f0d7yZ63f5eDK3/WDaZRXYlFKGgcw70ZL9N7OXzOy/Q+1KV+/NK8UsjJntiEu/f9PMDgRagDeSrYdmhYcUdkibV/J5ImlXSbuadwq/DJ8zoz69h/6Jf39WxTtMzsc7d+8RhYdRhFVAR4zRsOAFhH/m1lfH3YPvxYdGfRB3EWcz6WW1QkjjxAeYbr6D2+Z0dDg6EW+uAO9gtA0u4jMOH/qUjVnfYKTzLmd/FT475dt4DRS8n8GP0+8ZeCHtCrxJZovcsYOhW1FO9rsu/b+KzjoZa6ZrfAndzATKMAjzlKaRrvV1uMu/Dtg2bd+fNBNiWp+Mu7SHbCriMrYdhI+Y+SY+Rv96vO09m3H147hnZyu8aer4nq7PIN93o0avhP7LwdemZ/06fMjjMdn5DmW+9mD/aul5ugMf9fUVvKPp74GTU5hl0rvgz5TMOTPc9sayFNd6pA0YTQs+lvq3eNvtbXgb/QK8dvd+vHZ6Q/ro3EmasGkQ0p2G9/Z/Nj2YX0gvwjvoKLBsiNfgz0jrFfkQ4iMtrqNDsGn99JHZKK1/hFyhB7qKcg2CDVvhI2RuxEcsCG+S2igX5ljcA7EdPoJluF/CFV3YKflAZRMpfRt4Lbf9kvQxywSwzsS9DUNqWw95WNHzTjCwab2z+VyWx+eZWaXcNRpCm8uNXjkjyzu86eo2fOK4DfGmtbXTvg1IBeDurlkslb1EE0b/OAgfXfECPsLhB/hY8Hn4Q/F13M19nZltZQNrrih1r2+DTwTzmJmtipfit8H7PtwIXCJpKt7/4XbcNQjuKq44zDvHnQHsKmk1M3sEf6Efk/ZfbWYPQafe20sz/XRVFpekZSSdhxdSDsM9NVvhLvZjgHMkrSmfG+E9uIbFbWZ2yNLYMBCsww28laT/4M0Sp+H33xa4hkjGvngHtV8B48s1edkgd5gzq8ymlBIbK3reiTIMpHmlLeXhq2b2VzN7Lte8MqRNFVn6aX1Leedy8DltnpB0CJ6XT+LesOfxysPP07EPmdnt+XiH+zkLlpKRLsGMhQUvZe8wyHFmapXT8E6aWXPIanjHqFPwGukv8HH1F5OaBSp9wTvWnUJHE0wtOXnjQUoj3/RTR8cY81vx2Tmzmtv/w6cRF64EeiHuyj6iu/iGMF8ymwq4i/c8fI6JnfAC4314U9nBycY18dkGrydXex1K23LrFdOUUu46UeHzTuTzlVHUvFLG/s3wZqtb0v9d8D4u2wHnpDAHpnfYd/Hm3tkjbXcsg7PEKIx+ImlTfBTGzfhwpB/htf2DLfXMXsr4t8bb/1/Fh2LdgPeq/r6ZrZfC7ITXoK8ws99KmmBmC5c27eFE0nvwWvPXgYXmNalB79Eu6XA8r27BPyDP4bNk7mhmz6UwV+LiYV+SNAVotCTQNEwjK/I96uvwj2CjpFvxmucHU/78P7xA8S7c+7UyPjHZRWb2s3LxDaZtaX023tyzIt6s9gnrGBq4Jv4BPB54xcyOLBPfkAwfLMnD/EiVX+Mf24fxpqg64Fwzu1zSE/hMpifghZ7Hc/ENdQ2+3EiFD+H9R5rN7L2S1sCb96ak7bPxWW53wj/Ow+0haSfZ+yl8GO5FZnaZXFxuJl6w3AIvlJ+Fe2vn482ree9ieBtGOdGE0X/+g7/UD8M9D380s90HqfAwC2/vPBR/YeyD91C+Dng+5958CK9VPQ8w2goPiTvMmwbmZx+UpXmhKJH7XSfpOLxW93GgEa91Pofn3XG5w38ILCupFngrfbwzFdUhL2HnPnyH4zMeniZpF3xUzVr4dN6Y2VV4G/LpZvY9vHPadlnhIedWHrQXs1V4U0rpOasCp/Auh42S5pXUZLJOGftb8SHP03EvCnhhoYh7GF/H+5fcAdxnZl/ICg/p+Cg8jAVG2gUyWhd8boJBnUYZb574PT6z5F14p7TJ+NwDW+IzHk4f6XMf5HMe1NEV+EyR4M0i1+MfuK3xXuqX4FM4T8RdqruO0Dm3T+ubftfhBZrz8Y5lp+EdJWvxJqrzc8dugjdX1dLhrh/sDpIV25RSkocVO4V3T/cpo6d55aB0rf+Mj/5YpeQ8lsW9N4eR1IfxScyOTb9nAcuWnn8sY2cJD8QAMbMFNkDRqx5YgrcRvgf4f2b2I9xVvZ+Z3YV7JZZktaSxgA1CTcR8THyVpB8BV0n6Mj7s9gD847wbPh/BE/hMh7PwD/aUfDylHViHAnWe1ne8mRneBLYN7uqdgE+qtRCfXfLbwPsk7ZrO9d/mUxE3Z3lngzcZVDZTaFtqSqkzn5J8Dbzgcov51MjHJVvPwfuTHI0Xzv5iaZKmfHxDQcrC0TDvRKcZWFNaFTetd4m920q6CS8k7o/fgyuRnpfcebyFd9zeBDhSPhnbFnjhDTN70czeSs9mTD89BokCRGXxEj788wlgUurVvAkub4uZnWFmbw7ly240Ip+c6kr8Y/FTvBZ/Mj7E9rtAq/mUuPXAW8BuZnaOmV2Wj2ewPsQ9UcmFHavgppQU76jSKxmtzSv4vbiOmX3MvNlhMa5PsXLq5wLu8QEfyv4fvPPkT4CfWZoFN8PM2uKdNTaJAkQFkR6yH+MfvjPw2t2FpQ9k0EH6qGyGz8Nxqpn9DXe3L8Brm3fjkuI34U0ZXzSzU3PHD6s3p5IKO6Op30iqwWZDBldMm1cAVjWX2X4E73h8MfD9tH8nvDnmTjP7P0v6Hzk7h2oWSWWeprRe8XLwyc7se3A4fm23kcttX4s3ZRwA3Cip2nxq7+rkhb0BH4FxlZn9tiSuYAxT3XuQYDgxszeB4yStBMyzAah0vpNI7vbL8Jfu3nifgf/iveuLeKe/VuBlM7s8O07DrJqY0swXdj5nZq/KRwJ8j47CzntTYacAHGBppEg6flDVMnM14/FmtkhS1pRyBN6+XdqU8h/51MR/M7N/473w2xlKD05q8tmIpFciKdMr+aykT5vZRfi1/jQ+70SmV3JSyXkP2bwTeVtxpc7puHchG4VwJj03r6yON6/cXGLvsNyjyTtWbWZN8hEVt+PP0w7mmisTcY/DV/GKTtb5+X5JTwObSlrbzB6P5op3BlFKrFDM7IUoPPSZN/Ee4B+QT07VjHf2m29mb5jZqVnhYahrnz2RPlyX4S/hvdPm0sLOjcCvzWwH6xhmOuiu9kpuSikXrypcr2Q0Nq+UsVl0FApOxT1Pd5rZy2nbAnwE2H8y23IevCvwqckfJ3jHEAWIYNSTXrJz8FretZL+jLfb/j0Lk3MDD5uEcTdURGGnkppSSuxq78iZ1mfLO3ROB5rxORyWmNntqT3+H8CDkk5Nx71pZteZ2TXp+OHoGDtqmlcyzGmTtKyk7eVS35YKBbUp2OH4kFwkjZd0Gt4X4sl8POn/y2Y2dyhtDiqPmEgqGDNI2hwfsneJmZ030vZ0h6TxwNl4rfQpXFzsUPNe7cMxKqAK11M5CVg5NaWsijel3IXrMLwXF2Yb0qaUHmzcCh/W+hLuBTk0/f6Amd2fwhyLD4f8O9508YWRcp1rlMjBl9h8BJ6vN+PN2ZdZGu2R2SKfzGwmnvfZ+YRnNACiABGMISTV4C/u95rZrsP9Qu4PI13Ykc+4eQFwvZn9ItU6T8JH/FyJN2WU7TcyBLZUpdpwAe9EeBquL3MDXsC6Ci/czMD7FOyDF2xOx0XZ7i0X71Chktk0U/PKH/Emi3OBzZOHZH/g62a2QQo3Ge9IWZ15SIbJ3mzekfzMl+8GDjezz6XCzWV4P5cLzaw16yAp1934OXCkmT2Tjh2S2USD0UcUIIIxhaTV8drzBSRP7chaVJ6RLuykj8rueA30cDN7RtKf8AJNqeDVcEw/XVFTePdmb1qfTQVO692dzZJWxp+JFyRtj3eOrcWVPL+Pq/3Wmtljpcdm61TwMxUMP1GACIIRYqQLOyPdlJKzo+L1SkrsrfjmlXyepMLqD/GhuS/hs7I+gfd1+auZHZ/C3YZ34L2oTHzhdQi6EJ0og2CEMLOnzew8G+bhpLn0F+HzEvwXuNLM9s0KD2n/oNqUev6PinkncjaPVjn4rPDwXnzI5XQzWw0fgrkjPsX3XGCKpN1Tc0stPt9Dufii8BB0ITwQQfAOZriaUlR+3olaXGchm3fia/iwx7tx/Y3/AJ81nxxsWBltzSspjbzXYQru+XgTn6/jRTM7KO07Ktl5Kj4kdie8ueX7ZvbAUNoYjC2iABEE73CGqykl1eZ/CGwOXI13PGzFhzzuic+8+n58UrDP4rX4RZYbOjrcrvRKb16RtBww2Vy5E0kNqaBTC/wb+Cju4dkcONPMnpIPNb0V7+z5lqTJ5hPYDUtBJxg7RBNGELzDGY6mFFXovBM5+0Zd80piB3yGSyR9CDhJ0g7m84tciQti/QVYDviSXJr7MOAmfAIrovAQDJTwQARBMKSowuedGG3NK6VImosXxH6Ke3P2x/tn7AC8YWbnSfoocCTe/PI0cLSZvT4iBgdjhtDCCIJgSLEK1yuxNK03qXlFUta8cgD+Qc6m9X5/sv96upnWe7g7G0qahMuBr2xmF6Zt4/AmoQ/j0trnmdmVkrbDCxA/zLwk0TkyWBqiCSMIguGgIqbwLkelN6/0hJnNN7PtgTsk/TxtPgnvz9IIzE7zVYAXijYGdkyFsyg8BEtFNGEEQTAsVMq8EyU2VXTzSl+RtAk+v8MmuT4NOwNfAT6ZhuyS+kfMGSk7g7FFeCCCIBgWhnveiT7aVDEKqUuDubz6H4HbJf0qbbsRn+9hhVy4OSNiYDAmiQJEEATDyf34B3lv6FBJHWEqtnmln3wVH2qa2foNvJ/bayNpVDB2iSaMIAiGleGad6I/VGLzytIiabkYaREMJVGACIIgYOQVUgeLmM8hGC6iCSMIgsC5n8prXuk3UXgIhouYByIIggAwsxZJVwDzUifJcM8GQQ9EE0YQBEEQBP0mmjCCIAiCIOg3UYAIgiAIgqDfRAEiCIIgCIJ+EwWIIAiCIAj6TRQggiAIgiDoN1GACIIgCIKg3/x/on0/ITzbPtsAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "name_label = 'celltype'\n", "cols_anno = ['celltype', 'predicted'][:]\n", "df_probs = obs[list(classes)]\n", "\n", "\n", "gs = pl.wrapper_heatmap_scores(\n", " df_probs.iloc[obs_ids2], obs.iloc[obs_ids2], ignore_index=True,\n", " col_label='celltype', col_pred='predicted',\n", " n_subsample=50,\n", " cmap_heat='magma_r', # if prob_func == 'softmax' else 'RdBu_r'\n", " fp=figdir / f'heatmap_probas.pdf'\n", " )\n", "\n", "gs.figure" ] }, { "cell_type": "markdown", "id": "82913080", "metadata": {}, "source": [ "## 2 Further analysis\n", "\n", "By default, CAME will use the **last** layer of hidden states, as the embeddings, to produce cell- and gene-UMAP. \n", "\n", "> You can also load ALL of the model hidden states that have been seved during CAME's default pipeline:\n", "\n", "```py\n", "hidden_list = came.load_hidden_states(resdir / 'hidden_list.h5')\n", "hidden_list # a list of dicts\n", "h_dict = hidden_list[-1]. # the last layer of hidden states\n", "```\n", "\n", "Make AnnData objects, storing only the CAME-embeddings and annotations, for cells and genes." ] }, { "cell_type": "code", "execution_count": 10, "id": "8f9aba92", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "adding columns to `adata.obs` (ignore_index=True):\n", "original_name, dataset, REF, celltype, predicted, max_probs, is_right, pancreatic acinar cell, type B pancreatic cell, pancreatic D cell, pancreatic stellate cell, pancreatic ductal cell, pancreatic A cell, pancreatic epsilon cell, pancreatic PP cell, endothelial cell, macrophage, Schwann cell, mast cell, T cell, done!\n", "adding columns to `adata.obs` (ignore_index=True):\n", "name, done!\n" ] } ], "source": [ "adt = pp.make_adata(h_dict['cell'], obs=dpair.obs, assparse=False, ignore_index=True)\n", "gadt = pp.make_adata(h_dict['gene'], obs=dpair.var.iloc[:, :2], assparse=False, ignore_index=True)\n", "\n", "# adt.write(resdir / 'adt_hidden_cell.h5ad')\n", "# gadt.write_h5ad(resdir / 'adt_hidden_gene.h5ad')" ] }, { "cell_type": "markdown", "id": "f1cf40ee", "metadata": {}, "source": [ "### UMAP of cell embeddings" ] }, { "cell_type": "code", "execution_count": 11, "id": "bf88eb7b", "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "... storing 'dataset' as categorical\n", "... storing 'REF' as categorical\n", "... storing 'celltype' as categorical\n", "... storing 'predicted' as categorical\n", "WARNING: saving figure to file _temp\\('Baron_human', 'Baron_mouse')-(12-16 18.13.20)\\figs\\umap-dataset.pdf\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZUAAAEnCAYAAABhWd5FAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAxOAAAMTgF/d4wjAAB2EklEQVR4nOzddXwUx9/A8c/s7t3FPQEChODu7lCK01KhAjWg7vSh7vZrqbfUvVClpUCLtLi7uwUNxEiIJ2e78/xxRwotFCghQeb9al65W51ZmvveuJBSoiiKoiilQSvvBCiKoigXDhVUFEVRlFKjgoqiKIpSalRQURRFUUqNCiqKoihKqVFBRVEURSk1KqgoiqIopUYFFeUYQoi9QohRp3hsiBDivrOdpuPct7EQon9Z31dRlJNTQUU5E08BD5fDfWcArcvhvoqinIQKKsqZEBfZfRVFOQkVVC5iQohKQojxQohcIUSGEOKhv+0fJoRYK4QoEkIUCyFWCCEu9e97HngMqCaEkEKIbic7x7+/phBiqhAiWwhRKIRYIIToeNR+IYR4WAixy3/+JiHEvUII4d+/F6gAPOd/rSjKOUQFlYuUEMIApgPVgV5AH2AgUM2//3LgM+ADoAHQCcgDvhdC2IE3/fsOAJWAJadwDsCPgAV0BJoBycAUIUSQf///gBHASKAh8DLwHPCKf39r4BDwFqoKTFHOOUZ5J0ApNz2AxkBjKeUmACHEYGCvf382cJuUcoz//V4hxHvA70AFKWWyEKIQMKWUaf7z//UcfAGkDrAd2COlLPY39LcALCFEMPAQMExKOcl/jd1CiEjgbSHEC1LKQ0IICyiQUh46Gw9GUZT/TgWVi1djoPhIQAGQUqYKIXb7Xy/0V4k9BdQFauErWQDox7vgKZ7zBPAeMEgIsQhfaelbKaVTCNEaCAC+EkJ8cdSldf/26sDWM8u2oihnk6r+usgdaas4itu//XpgE1AfWAU8DQw9ybVOeo6U8mN81WW346s6exjYKIRowF//P96ELxgd+WkM1AZ2nWb2FEUpYyqoXLzWAoH4qp4A8Fcz1fK/fRL4Tkp5o5RytJRyDpB45FD/778vxvOv5wghQoUQ7wCVpZTfSSmH+e8XCgwAtgEeIFFKmXTkB2iLr23lRPdVFOUcoaq/Ll5zgaXAN0KIe4BcYBTg8O9PBtr5q6Qygd7As/59R47JByKFEHWBfSc7R0qZL4ToCrQXQjwIpOPrHOAAlkopc4UQH+Pr2ZUNzANaAh8B46SUrqPuW0cIES+lTCnVp6IoyhlRJZWLlJTSAvoDa/A1pM8D1uGrtgK4D9gPzAFWA0PwVUt58JUcwNeT6yCwAbj8FM+5Al/wmYyvwX44MERKudC////wBben8JVc3gBGA/celfw3gH74qs3UFyNFOYcItZywoiiKUlpUSUVRFEUpNSqoKIqiKKVGBRVFURSl1KigoiiKopQaFVQURVGUUlNm3TEdDoeMjY0tq9spilIODh486JZSOk5+pHKhKrOgEhsby4EDB8rqdoqilAMhhJrk8yKnqr8URVGUUqOCiqIoilJqVFBRFEVRSo0KKoqiKEqpUUFFURRFKTUqqCiKoiilRgUVRVEUpdSooKIoiqKUGhVULgA5RW4GfbyYzxbs4u/r48zdnsFv6w6WU8oURbnYqFXzLgCPjt/Aqn05rNqXQ7OqERS6TNbu3MOWlDyS8gwO5buoEhmEXddoXCWcjQdyiQiy8dmC3QzrmEiN2JAzuv9LU7YQ4jBoXzOa1NxiutSOJTpEzdShKBcjFVQuAJZlASDwBZi9WUXMto/kcgRPV/yUD65pzk1jVhIaYOPzm1tx2QeLqKmlsceK4/d1B3msbz2GtK12yvfLyHfidFt8uiCJH5Yno+PlQ9to/pjXkDFmb+pXDOGPEV3PUm4VRTmXqaBynsst8rAwKQsACezNKgJggtkZCTyY+hhRY7KIC/+CRxN3U/jDB1yjJfKG/Qve9wzkO2dPnp7kJcCm06paFBHBNsICbMe915QNKTz/+xYibR5eKHiRAKsFEXQiVuTQRttGPoFopsXWtALemL6NR3rXK6OnoCjKuUIFlfNccnYRLq9Fg/hQdqYVMFj8yYPGr0wx2/OcdygO4WWPJ4eojGVoWVNprG3EYVRBSrjN+IMr9MV0d7/N//28Hpsm6FYvjs9vbvXPGx3eQ+tF91LP7M8BGU8d7QAGXp42vkMCN7kf5wP7B2xw3MYr3htIWPEDdPkQAiPK+pEoilKOVEP9ea5WXAgLH+nG5N7FhGtFeDEIxM1N+izu0SbRX1tKa30Hr9i+or22mSwRSVJ0d7zCRoEMwIGHcfaXAKgQFkC76tHHXH/86mQ2Hsjho0lzic1YQrx7D4ddgk1WIokiDSFAE/Ch/X3CKCQYJ3frk7jOnELBlCfL45EoilKOVFA5j7m9Fj3+NxHbhy3Qf7yWF+zfst2qwi3uxwDJw7ZfqKWlUktLRWCx26xIoCxkYboNt9RIkvHslRWJJJ+XjS85kFPM3qyCkutvTsnl4V82cN1ny3h9RwXusv2PWHJ4lLE01XbjxI4pBQBhFJIhwwGI0gr4wtuPTRWvJLfYUx6PRlGUcqKCynls5uY0nE430nQx32xMK3MdX9nf4Gv7Gwj/MSvMurSWYzgsQ6msZ2FgMdtqiYVGPZFMG307wRTTS19FQ7GX1olRJddvUCmMjjWj6VI7hoEB6/jM8yTX6vPprq+ntesj9skKaEhMKXBjUFHkIAQY0kPo5a9x859eRv68rlyejaIo5UMFlfNYw3An3W2b6eB6n1s8T/ChZyB2PHj9IWWJ1YDnvbfwu/UA1UQaw92PMMz9KNmE0cn1HmusWkgJO2U8cSKXxtpunvt9E3d+uwopJUIIvr+9HQ3jw1njTSSj5iCKr/qGnq7XMTFIldFIBElaIiKqJl6hAzDbbEm3P3vwcJXN9GlUsTwfkaIoZUwFlfNUZm4BByY+zZv6B7QR24kiD7vwINFYYDbBhY1dVjwNxR7itcNkWuH8YH+FO43JAFytL6SHsR4XBh21rczyNuMn8xKEhJ3bN5N0IJ2cIjetXp7Je7N3EhBVhbibviShQVuu61iP4R0TeUXcytXiLfKMaDLyiunpfA0pob2+GcMsZntyBltT88v5SSmKUpZUUDkPLUrKZPwbd9EhZyo5Mohm2g5m2h/madsPGHgBjRtdj3OjMYc22nZaOT/mbu9DWEAHbRN2PEwx21EoHTjwIoENsiYAWvFh/tQfInj6CF79YyvgG/8SFxYAQJDdoG31aHqsf4hRfMBaZwXquLdgelxcoq1DCIgURYSLQu6wTWPf4SL+3JRaLs9JUZSyp7oUn4dGz9qObjUhXmTQVOymr7aCSFGAlLDJTOByYyl99eXowuIKfREBuAgWTgKFh1+8XXBjI4NIPvf240FjIltkApGigMoii6rVajAj7zJCYrozYeVBPKZv2pditxePaWFaktX7DtPe5cJAULdCKGOyenGv/hu3OmYhJYi4Rrhy0qjhOsjCrSmEB9jo06hSOT81RVHKggoq56GIIAczrIZcrS2gqnaIBHEIIcAloZm+BwADiz1WBbIIo522lSiRxyue67HQeNP4iHQZwafm5TiElxqkMMyYTroRz8z9HuYTS/GKJLxWLDHk0l1bw9Lkhjz6SxC7MgvZmprHqvhX2JaWT71D6+hgbGGc2ZUhYh4mgk2HTHZ0/p7qwR5m1mpJXJiaskVRLhYqqJyHdh/ydfsNF4VoAl+3Ximx+/cXSYMg4QXLYpDnBTY5hqELiCeTobZZAFgShhsz6O56m6v1+XSXa6nWtBN/rL8TC/Cis9FVnXH2F6io5TLZbMf96+IAiAg0WJecg8OmcV1tQfN9O5ng7cBoz0D2yYosshqTPiOL+Y90IyE6yJeowkyY9gi0vQsS2mJZkkVJmbStEcX3y/aT5/QQFmCjV8M4xizZR7/GlWieEFnGT1ZRlDMl/j6r7dlSpUoVeeDAgTK514Xu22V7eW/WTgoK8vkw/k96HB4HQL5lp5AgJnvbcLt9BlKCBaz21qC1sbvk/GwZzGHCCBcF7LMqUk2kE6vl8Zm3H4PsKwg3M9EF5FsBhAgnRdjJl0FslNW53fMI3evGMnf7IQDGDG9D10M/wsxnSLLVpbpnB+vsLVlHXW545H0CbL4eYSSvhC97Qo9nofP/8dG8JFbO+InbAubyQXEftsgEcgnhbvsfJFgHWFDvGT6+sWVZP1rlDAkhDkopq5R3OpTyo0oq56Gb2iVyU7tE8pwexsyrRbMl04jW8tE0jYrkcI1tIQBCgA60NnYjBLilhl1YZMlwamspOKVBc20nuoBC6eBwRGMC82eyS8ZTWWaSRhQ1SCVYuCmWDnrqaxloLmLmni48cEkt2taIomOtWAjuhKzZg1q7ZrPVqkpVdxKhUaGMnr2Te7vXIthhQNXW8NAmCI0HYN3+HG7QZ9LBXEd1227itcPc5H6cNnIDjfU9HKoQUI5PWFGU/0r1/jqPhQXYqBgTQTF2pIRgnKRZYbikryLMV40lcGGwyqzF994eeKRGQGwNUmQUCOGrPgN0TDp2vpR5EYNwBlQkh1Bc2HCj4ZWCGC0fUwoet/1Ikdti9JwkfluXAkBqSH1+b/AWb3quYbT3KsJkIYvS7Xw8byer9x3+K8HhVUDTkFISmTSBS/T1CAE7ZBXmmU3ZL+O4wzOSrq53eHv2Xnakq+7IinK+UUHlPNejfkU+sq5ECPBIQUUtjwpaLlKCGw3DEcqK8L600pMYZpuJTVhUzlpEJZGDQ5gIoaMDBQGV2J0r6JE7nibuNYSLQmpqqeywEjCEr4pUQ5Jq/TU3WJHLS1aBi66vz2P61izG2q9hrVWLQzKC4bbpPGt8y+5ZX/4jzflOLzs9saQQwxaq85W3N9kyBIGkW/14ikQgHWpGkxgdXFaPUVGUUqKCynkuKthO+8vv4HtPd3T+ah8TAhxYULUtravHYvl3WdL3j27ZghA1L4VeL0Pnhwm7fyENVj7OfFoyMegq9ss4bnQ/ydQ233DICvF1FRaw1GpQco/4iEDCA21c17oqlzerzB8PdCZLj+Ya97MsMBtzkz6Ty9I/ZMUe39T8piV5YfJmvpi3hTSi2WQmEiVzeNf+MVcai+mibSCzwEWI3SAtz4ndUP97Ksr5RrWpXADyMw9ynTGf38yOtNc2U1HLQUrwCg1b8nICzEXstdWkuncXH3oHMti+kGjPYQ57dCJ2zkDsWUBxbEscrsNIEQvVu1N78+/c3z6WoYsPclgfwuvGZ3hjGuCs+Rg3OCX7M/O4sXoBhq7x0hWNuPyDRVheNy3lFurp+9kn46gpD/Kw526GFvomlcwscDJ+8RaWBtzHQ3Yn+QQx1P0IDbVkKpPGd2ZPantMnrmsARX9gy1v+XoF+cVuJtzTqTwfsaIop0gFlQtA+6YNWba5B5Ozm9FV34BT6gQIkxw9hvt4ge+tB6kuDrCjQj8mJ3emp7maFMJosu8PLAQbZE2ibVHcqz9HDXM3GVtt9E3oRKf8KUxpEE/crl85IGNIyNzCyDo/w5UvwtuN4Odkfmv8Ea/uqIBAcKttBrfZP8ElDbbJBLp5P2DUoCb09s//FR5oJzIslLXuenRgPWGiiBHGr9g1SROxi/fMQWxPK6BqZBCr9h4mLbeYBdsPIYEOr87ismaVeaJv/fJ92Iqi/CtVv3ABqF65Aqubv8ocqzm3R3zOPZ4RFEk7sWYGFWUGM1t9BkPGUefuH3nsqvZUEDnskvFkBSSwu/pgPqv7OXp8U+4R4xmjvcDjtp9x7J+HseMPGmVMJSo0mKLLPsNCI331JKSUeIp97TajVnpJy3WR7/RgbziAT7yXcZP1HJ9XfomRverRv0k85KXCrrkE2HS+vbMzX1V7g1lWc9ZaNeiibyLO4WGj0YiH+zVl4WPdyS128+7MrWyZ9AaVRQYAKbkupqxPKecnrSjKyaiSygXizq416FgrmlaJUbjX5GD73cPGqjdwZY36dNv2EjR4DYAuzRvQbtrX3GaOIdq5hOg2/XnHs4cDxdWwNxvE7h0pdC2YgwQkAhFaESM4hnqLR/BmxddYmWby7f6VFNTox2ObKpNKDAAuj8mz8/OAwXTQNpGfm82oP7dROTKQS7c8QeD2SeTduZorv9hDRKDBjm6foseHcf+k8TziGk19DlKnZQKRwXYqT7+T+QHLqUI6Tby7+D/vvQBUiQwsp6erKMqpUkHlAhFg02nlXwvF3mIwNL6CwS8v4LLc3XQr3A7Fvq69Nl1j6RM9yPxwFOSAe9Pv2DeP42vPUB6yTaQQW0lz/3fmpXRrNIiqriQIiub+y2/F6bFI//lequ4Zh0PexyT7MzzmuZ3tVoIvHbj41vYqqwrqEtbkY3o2qMDUA9ez3hPO7imH6FE/ju673mDZnCjGBl7GoYLq7BYPEKx5GRdkA0C6CoiUOUjAVTJPAKTnOXlo3DpeH9QEm64K2YpyLlJB5UJlC2TqA52ATqTqt1Apwj9dyoHVpP00gvezO6DLZjy/aSy5egT1A3OI8ubiMUOxNEiy4rlBnwUzZ/FC0BN0bdyDdq8mwMBPCdk9lQVWI3prq2gsdvGz/UXuc99PkqzC3cbvzDZbMMbsSd0QO15LUrdZB0YutGDXYTQyecExgy4GiGKLHra1POMZRmCV+rz25zZ6NayIpDbNmIOJoKW2nUCcDNX/xJZj0j5/G66Gz2Br1LdcH6+iKMengsoFrFp0MPf9sIYZW9JZ/kQPXF6LaV+MZjgbuNZwU1k7jM3ycpv7PuyYDNYnUUHPxy11vjH70IeVVBaZrM0O4PCGw1TzBOPcsY5CqxKVHU66eDfhRSOcIt63vc8MqxXXGgsAmGq1ZebSVcRv+oTbHnmDMbe0IHfLLEauDGOa2Zqr9UU8rv9IoOZlJL8wJrkPa/d7KFp0kCU04UVRnw7GVmqSygL7CGJEHi4MDGFh5O8+Sc4VRSkvKqhc4Po3rkR0sJ3QAIOXxm9gknMQSXoU62zN+CjkG9z5uWz1VuL94K/xeAVIjRHue5gm2zM3tD/ta8SQve8wGw4X8xvvsC7pUeyOfAJxAb7ZkKWECK2I5nIHlgQJTLdac799Mre5JzBxUlsKcg5x08EX2BVyKw8X3M0Ysw/j7c8hJfTWVnK5vowkqxLVRRpZhBLkvz5IYkQeAAHCy7yGr9Ct/b3l8zAVRTkpFVQucH0bV6JPo4pM35xGsENH0zR+MC+leXw41rWT+e2XN7nu4AJae9cg0XFiY55szrg72/LQT+uZtnYPEcGBWP7r3eV6EE16+aFDKtaS0WhADkEcNkOoraf5J7EUJJDO7542rBY1yD1Ug8xDQbi4ip8KmgOCjbIG17qfpZHYwzDjT1wiiOpaKh94Lqedto00GUFLsZMKWg57ZRy7rErskfE0b3ZlOT5NRVFORgWVi0DbF6chig9zq/EHffS6TLFasTY5l2mj7+dubSIpegxd3KOJ5xBrZC0cuk7b6jE0qBDEKOcwtnmqcSOPE+LQGXHj1VQNdrP9m+uo679+BEUEay6OTHjdyTWaL+xvkSAyeK7BND4d1BSX16L1y0E4MQGoEmbwjfiUDKLwVO5LwN55BFnFXKkvIUE7VDKCX0oIpYj3rKsRFZtxY0Jc+TxERVFOiZr6/gK3J7OAjPcuobW2HQuN6VYr7vU8yBvGJ0SKPGqKVEa476GZvocXbGN4Iehx2vYdyuFNMxm0/SGc2AiSTrbLKjwT8BRPDOlN62n9cWfsxMBTMtDJkrDBSqSKlsU66jHZ05prEwppV8WGHh4PwbG4f3+IFCuKdxv8zAuX1SP8/brgzCWPAMJw4pWCYhyE4CxJv8QXXATgvWMhRnyT8niMyilSU98rql/mBW7IZ8swMBFAjgzioBXFrfpUrjEWcom2nupaBr84XqQu+zkUkMjTNw1g7fzf+H5DHplWGF5LYAhJbZFCUX4Ot49ZBXkp2PGQUrkfy2V9pnjbkCqjqaxls96qRZOEGDZF92ZFmgd91Rcw+0XktqnY8eLAw7SNafR/fyl7Wj+LRPBV0B0UdH6afIKx/P9LCuFLvyYgS4ayq/oQjJha5fcgFUU5JaqkcgHbkpJHv9ELseOhtdjGWPur6ALGeHvQVdtIKIVEa4XkWEHkEkKCdggRUwcyt7PcrEMbbQcAE7wd+MC8Eiu6FrEhAYzvY8KsF6DZEHIa3khKjpM/V23j2yW7GNK9OY/0rsfYpXtZuGU/H0f9iLH+B1YnDOeVnVXZLytQX9vHc8ZYFpiNqeBw0e/piZCfyr65X1Nt3ZtY8q/SCUAK0ay5ahEDmsSX38NUTokqqSgqqFzAvKbFZe8vYmuab12SgWIhI2wTqCiyCBRenNIgQHh9k0+ikxtak+iC3Qi8ZFsBRGq+aiivBBOd5KYPUeuqZ3wXf6M2hMTB3Yshey/OtT9z+8421KsSx1P9G4CrAEY3g8QueHbOQnPlMs1qxxhvT942PqaKlsUmqxpxWh6O1rcQuepdGDqF5atXk7p2Gr3tG3nXeRmXt29Aw963gV1Ng38+UEFFUUHlApeaU0z7UXNK3r+gf8HNxhwsfIt4aUKgIbnVGMWHdw8g8MNmSMuLwNdIjvAFFeNIyeHOhVCpCebCd/h+XS5aza40TP6e5qm/8Grg/9GueCHd73gD4hrCj9cD8M6uStwqfyVMFJesPumSGje5nyRdRvJl53xqFG1id5WBVG7SjSlbc6gYFkizhAhCA2xl/9CU/0wFFUX1/rrAxYUFULdiCNvTCoggn5uNOb6qJQk2ASDJ0qL56sqK7LYiWR08hF5h+3BkbUMUZ+IkmHCRR6pRhUreA6D7PuRdbe/n5ekzWZg5DLfU2RTdkwiXk+6sZO7Xz9M9cCdc/yN83p3OogEhshiPP6AUShsHZRw/O17GKzX0lRa3eJ9g7Oab2LN5IAGRPXh4pcaoYb3pXlf19lKU84lqqL/A6Zrg+la+ebnyCWKp5Zs6/kh7hSVhn60m/DKU4Kn38WhmH8ZWfAJ7cQZ59oqEk8eL5i1sdkYzWevBJ5ug8fPTWbU3myFtEtgd0JCYII1G2TOpnLeW1s4P+aOoNhgOCI6GW2ewI6gpmgCbsJhktkfXdFwBMaySdTCEb/BkjhHHMr0l1Q/8xmUbH+CjuIm0SIgsp6emKMp/pUoqF4HLmsXz/fJ92HSN1XU/IG7pjdTSUgFYaWtLs5vfhPE3U6F4Jxue68XGA7n837bX0HL2coW2gArWIS61rQcLRs2rTL67Dz+v2k9SRiFPa9vQizPZYibwP+8QDhFJDZHKW4dac60ZSdXJ19Hbk0OBCCFEFrDLqsQUGczSglr8SQfmGA+QTyDDzHE4hcEv3s7sl3Hkh/Ti+UBV9aUo5xsVVC4CMSEOZo3sVvJ+S83f2bhvGdsOZjOwdS3sP1yFc9B3DJ7sZNeoOQTadVoWHOAt22cECi81RCrbrcrU1Q4SYuawznE7s1MGMiVzALfZ7+RJvqGutp862kHSrWgG6MvIlGF0e3M+Y6u1ZH1RNi079SVq5ZusohXvOxMBaFc9ivZ7P+I6MZtX7V+ChHzdQRPX1yy8pnv5PCxFUc6ICioXoQZ16kCdOjQG2DkLbIGs2F/A2hQXdjxEa5IP7O+TbMVQkWwqiBwaub7ken0ugRQRIQpJkCkE23U2GM14P/D/GF7wCRkyAhtexnm78bvZHhPJJ/oNaDUEA1o3IqHPELa8MB2BFwn0a1KJehVD+XVpe56X32DHJAQXi+z3Id0rgaDyfVCKopw2FVQudrUvhREbaW9aBM+azlLtbgJMN7d6HqEhu2ik7yOdKK7T5/CCbSyfevuzts59zNl8CFNI3hjUlFvHeiis9zFXVo/CNfcNHmQ8jbQ9uK4aS7f6FQg7qgfXyqd6krZ3C5V+6oPb9Qid1tSkntjPdplAA7EXQ0g0oFKU6kKsKOcjFVQUwLd410L9dgKkkwKCGKTNo5++AvBNlZKmRTHV6Mmw64diTryHJsYhhFdy71gn0cHBPNyrDg3iw9kQfisZv82ge0ASduckCLjvmPvYDY235ibzvMciZNlohpg9eMQxjj/M1tQV+zCQbBB1qWRTqzwqyvlIjVNRsCzJ4UIX0W9VAPnXFCleKXAKB0ZAGAHODDJj21HkclM1dw15MpBwrZhh7keYazWnZlww0x7ozL6sIlZOHM2Q9LcQug1GbIKQWN8FV30FC99mfc8f0Vd/RSOxm/xLRuHY+B3OqHqYW6ZwKKYtofW6U6l28/J7IMp/psapKKqkovDu7J18ODeJbXYNm7BKthdKOxqCK3Me4E5jGlccWoKUkEo0cVoOhdLBIRnOe7b3eTnjRh4fv4GNKbkkZTSjUbtnabruOVjxGVzylO+CQgNNp2nVKGj0DgChAFX+51s0uO1NqE7EinJ+U0FFoVW1SHo1qIA38i4KVn5LuMznTe+1fGv1RpMmH9vepb22BQ++kfVZViixZDPKO5hLtLUM1JeiY/H2+mu4QlvEjY7ZTFzZnvTaj9Cr7Z1/3ajlUN+PoigXLFX9pRzjgzk7+WVZEoPa1uSjmRv5zvYqOm6aaPsAsDSDrWYVinFwrfs5QilkleNuDspoKuu5uCxBmCgGII9g0vp+SZ22aj35i4Wq/lJUUFGOq8+7C3iv4GHqereXLJiVboWRp0VwnfMJhtpmURCcwGc5rXnOGEMeodhDo9ica6e3tpxe+mpsSDbLajR+cX15Z0cpIyqoKGqaFuW4alcIJTuikX8lFt/kktGigFpyP1PsT3CXNomeRVMBeMF7C7LbY6yLv44pVgeaa7uxY5ElQ3jHezWHC93lmRVFUcqQCirKcb0/uDntjB3oyJLeYIa/ET9AeLALkwneTgC0ToxgYNPK7D5UCMAXZj8KCcAQFsmyAik5xeWSB0VRyp4KKsqJJXZG4hunUoSGlL7XAFvMBJbLBgCs3JvD7G3pfH5zKwa3qUqqjCEIJ1usajgjalO3Ymh55eCil5brxLJOXMXtNS12pOXj9JhlmCrlQqaCinJCWZ2e5zPzMgQQhIUQvuV9wyikgb6fhmIvAPFhDn5elYwlJbd1qs50qzVLrAbEaflMf6gLNr1s/zdzeS/OD8jDhW5avjSTvu8t4IuFu1m+O4t2r87mo3lJAKTnOdl9qICR49Zy6Vvz+HBuEq3+N4te7y7g2k+WALA3s5CvFu3Ba1r/ditFOSHVpVg5oYggO1arW9mQEUy606BN5q+Ei2K+9PbjO6snybICACl5LuxFHorcJo0qh/Pr3R2YvfVrCp0eXrCX4f9iUrJ0yTyGTC7ii1ta0aN+hbK7dznblppHv/cWYgFZhW5G/bGVEIfv2VeJDIK0jYR+2pO3PLfwq7cLAG9M315y/va0PB4bv56UXCcLd2bSPCGC5mrpAeU/UEFFOSFdE9w9sDvQne2p+bR4vx+NZRLrZQ2kv5CrAX0bV+LpAfWpFO6bWqVltUhaViu7DyS312Lw58sYFrSIAXv+x2XafXwwN4LEmGBqxoawPSWHGjmLsdXuAbYAAA7O/4Yd6xbSsmA+ryV8yt0D2vs+fM9Dvd6Zz470gmO2eS3IKfYCIKVk0b5iajkqcdh1/DnVXCaMW+Xrndk2MZLKkWqaHOW/UV2KlVPm9Jh8MGcnc7YdIvlwIfkuk251YvhmeNuzds+pG1KZsiGFt65tyrr9OczZlsGjfephN3xBbe3+bO4ds5QP3U+RSThBuMmVgYw1e7NGa8yYYa35/qt3+MD+ATl1ryMivhZb9x2k/u5vyJShuKSNL81+rI0fwp6sQsYOb0OTKhFnLT+lLbfIQ9MXZ/zrMQmRgezPLiYq0OCwP9AAxJLDPcZvfGn244D0TaUTaAiKvZIONaP54fZ2p50e1aVYUSUV5ZQF2HQe7l2Ph3vXY9qGVF6etoWnBzQ4q/dcte8ws7dlkFPk4bd1KfyyOpmW1SLpUCsGu65xwxdLMdwFNHbsRSDJIoRY8umjr6Kf+ADnt9cw2raGRWZD6m2ditxeQH2gyLITo+VjAU8a39M4+RKKCeC6z5YyvGN1Huld76zmq7Qs35N10mP2Z/t63x0dUADaalsZZkxnp6zCD2YPAIq9vi+ZwXYdt9cqCd6KcqpUSUU5p5mWpMDpJTzIRpHby5KkLG4bu4rrWlVl9rZ0sgrcSKAaaUSLXH62v4Tu71QgEeQQQoT0BQ83BoHCi1cKDCFZ6q2HU9jZaVWitpbGbZ6RhAYE8Hi/+lzfJqG8s35KNqfk0n/0ov94tqS5SGK9rIl1nD47l9aP44tbWp/WFVVJRVFfQ5Rzmq4JwoN867EE2Q261o3l/ktqsXxPJlULt1DFyAFgHxVZI+vyofdyADKtEHIqdaRA2gEQgI6vR9M2mcBeK45G+h66ahu41ZhOd309g7U55Dvd7DtcdM4P2JRS8sGcnSzcmXlKxwdTzLX6XAJwHbVVUEs7yNX6guOe43RfnL3olDOjqr+U80q+08u2tDzyD6czx/4cc2VzbuVhBBBnL+JmMRPwjf4fv1/QTXchNF9QsWNRLA0aCv88Zvi6SANs8lblZfs3JHrSeHnezWw8mMN3t55+m0JZyXN6eXfWTk5U06AJiAq2ER5gR9cEbbNm8pLtaySCX8xuJcc9aExAymO3HbExJfcspV65kKmgopxXvl26l5lbMmgh0njdex3rqEuViEB654/nCfEjK2U94vQCqlv7GWQs9FWD+ecuO2SFEavlAb5tGmBK0AXU0lMA0ITvQ3pHWn55ZfGUhAfaeHFgQ56cuOm4+y0JIQ4buzILCQswmGh2xEIwxTw2UF7vfhr8U/H8XaXwAJbvzqJtjejSTr5yAVPVX8p5pX3NGHpHpDDB8TxxIptUK5zaeUsokgHskpUIwskNxY/wnOcW1mgN+SjkfuZYzTCBWC2PdWYNsmRIydQzGr4AEyBMdlsVedl7EwAZ+ed29RfAxLUHT7gvItAgK9/XQF/FlcQ9xu+MN7tQTMAxxx2QcSU9v/4uI9/NTV+tKL0EKxcFVVJRzittqkfxU9XGLN1Wnxv12dQX+2ivb8MtBTkyjHCRQZgo4lurN+O9fQnJzGSi43uytTiWeRK5RFuDGzseCbajSjGWhEBc9NZWYqGRWbVneWf1pFbvyz7udpsuyC32lkypc6W+iNuNafxhtmGjrHFK19aAG9pWpWF8RKmkVbl4qKCinFfW7s9me5aHBY5u1PSkUEX4GqrtQjJPtuAp13A0w+DeqPVclvsDqUY4VcRhpAldtTwMJEGiCPAFFAvQJKTLcH62uvOcbSwmOg/SC9OS6Nrxq4bOBbEhDjLyXfy9VUVKecy2t72DmGq2O25A0bB4wviBZVZ9ZlstS7ZbwPtzdlGvYigg6dOo0tnIgnIBUkFFOa+8Om0b+1NSecjxGTZMhAYF0k6eDGG/GY0Xnef71Wfn1BnEG5nU1vcjJZgIQoQTjzRwS4EN3wevBiywGvOJeTlLrYbMkG1oXDWK/GKvvxH83A0qnevEMn61r5t+mEMnz2USaNMo9hw7b1cxAayTtY57jQgKuEWfTkVx+JigcsSO9Hy2pOaroKKcMtWmopxXdE3yrDEWGyYmgmlma+7zPIgmJNEiHwmk57n4zuxJE9cXmOgUY0dDIgAbXoqkr13BiZ2fza64sbON6gDY4hsz6q7rmP5QF4wyngjzdL16VeOSklSey9f9t9hjoQsIOmbQouQafR5VRMY/rnGYMHq432S090oeM34kjMJj9l/XqioPXVr7bGVBuQCd2381ivI329IKmG21xI2BISTdtPV8aBvNCqsur3qHoAuIyNlMTQ7QVVvHfhnHy54b+dh7OW6pk0Mw2YTxiTmAOzwjOUQE3fT1jL2+Jmuf6cmEuzuWdxZPmU3XqBnrm8srwNAIMP5aUK1l9SiOxJWGYh9v2D7jHv33414nWVagu7aOu43JtNG2HbNv0roUhDh3S2vKuUeNqFfOKzd+sZxFSZmEUUB9sZ9AXHxmfxu7MBnmfoSNVg2WB9xLlgwliny8aDznHcrswD40qBTG/+27m2baLpIG/MzUnOokRAVwZf0wCIwo76z9J3syC3lv9k4mHdUT7M1BjXlq0iZcXolNA48luVxbwkqrHqkcv3uwHQ8ttJ0ss+oDAkOD+IhAasWF8NXQNqecHjWiXlFtKsp5xfQvOJVHCNW0dPpry7nM9TKNtD0ssJoQHGDnTc+1WAhCKKaTvoGRxngORvenQ60Ytld+m6kLx9GA2jx46an1hDqXVY8J5o1BTXiwRy0W78xCCNhwMA+Xfw4vX/OK4HfrnyUwTYAmBF5L4sbGMuuvedy8FgztUJ3hnaqXUU6UC4UKKsp55ekB9fl8wW6mb0qjLgdoqSdxe892zNrXBnNzOh1qRPPZ1oF009bwhvExUaKAYmlQkJuFbeZntKxqED/0HTrUjCnvrJQam65RPSaE6jEhALw5fZu/hPLv51kSLH9NRZChUeS1MDTBD7e1pcDtvaCekVJ2VFBRzisN48N59/rmmJbEY/YiQJhkLzlA00NjCdadHCgeSHiQjZ6ulURSgCkFAXh5VfuUbFGI92A+r0zbytT7O5d3Vs6aLxbuOWlAOVpMiJ1HetflsV83ckWzyrRRI+iVM6CCinJe0jWBrumAzheLdjPZ9TW6YbE6IIQRxY14zroFNwY1SaajsR1bUQrVNCfF0sHW1Hxmbk2nd8OK5Z2NUncwp/gf41ZOJrPAzZaUPH64rS0tynBxNeXCpHp/Kee9b4e34UfvJUSLPHrteYNrgtfjwsGb3mvR/aPmq8uDVBZZVBNpVLcdLtOVKcuSLkTJLAGn6uoWVejZoCIdasUQYNPPXuKUi4Lq/aVcEL6buw5t9VdszYaFIX3Zn2sx0z6SquIQW62qNND2IbAQCJbLBrR9fvE5PVr+TOzPKmLCmmTenZ30r8cJYGCzeN69vnmp3Vv1/lJU9ZdyQbixezPcnd9l3MpkNq89wN7cHCaYnRhqTMcjDCQawzyP0josl5at2l2wAQUgITqIET3rMn9nJmv355Rs71gzik0p+fRvXJHV+7Pp3zieB3qogY1K6VIlFeWCs2Z/Njd/uYICl2/53JriAJ/b32NN/UcZdP3Q8k1cGZJS8t7Mnbw7ZycAL17ekJs7JJ7Ve6qSiqLaVJQLTouESDa90Jun+9dHE5AYAtUdOQxqGFLeSStTQghG9KrD9BFduL51Vfo3UfN3KWefKqkoilJqVElFUSUVRVEUpdSooKIoiqKUGhVUFEVRlFKjgoqiKIpSalRQURRFUUqNGvxYht6ZuZ3pm9MpdHpwWxavXNmEplUjiAlxlHfSFEVRSoXqUnyWbTiQw9UfL6FhpTDWHcg9Zp8mwG5oLH/iUsKDbOWUQkUpPapLsaJKKqXEY1roQpCR76JiuG8N9PzNM5g7fzseswbrDuRyubaYcFHIfKspmTKcIhmA02Nxy9fLAXB5TN6+rhn1K4WXZ1YURVH+M1VSKQXvzNzOe7OTqBBiJ73ATZXIQLymxXjXnThw09r1CQB/2B+jisgkmGJ2ysrkyhC+8fbiBftYHvDcx1KrIQBjhreha53Y8sySovwnqqSiqIb6M1TsNlm0ZR+T7E9zRfGvABzMLiYj38Xd7hE87R7OQvsDPKr/yDD3o7zluRpNQBw5tNa2M8yYjhsDU/71T/HSlC3llR1FUZQzooLKGfpx5X52pOYSK3KJFrncqM8knHwsCRtlDXYTTxWRya3GNPIIplAEARCpFbLaqs14swsvem6itbaN1Y47iSUbt2mWc64URVH+G9WmcobynB7yCaKj6336acv4yD6aIJx8Zl4GwE5ZhQlmJwbqi6gpDjLdbE1HsYFIUUAXbRONtD3Y8eLEjhed8fYXuCv38XLOlaIoyn+jSipnQErJ5gN5Je9nWq2YbrYkCBcg6axtIAAXj3nvIFlW4Gf7i0yzP84VxjKWWw0wERh4mWm1xIPBQRlDmCjkuaprwVVQfhlTFEX5j1RQOQM70guYuTW95L0Hg3oimSv1RXxjG8W39lHcpk/Di8F4sysCqKJlYUlBiCjCjZ1B7uf5xuzDV97eeNHwoNMu9Vuy1/1efhlTFEX5j06p95cQogFwExAFTJZSTvnb/jDgEynlkBNd40Lt/fXTiv089/tmPKaFJSGMQt6zvU83bQNF2Ontfp0DMg4AAw9DtDkUCwdhOHnQ+AUdk12yCg3FbnQBB6xoXvcO5g+rDe8OaaPWwFDOK6r3l3LSNhUhRCdgJnAkItwmhJgA3CCldPu3BQLXAScMKheq69sk8NmC3ezOLAQgj2Amm+3prm9gnLd7SUAB8GJjrNUbgF7aSsJEMWlWBMvMuiyjHstlfZZb9SkgkBZiJwVFjcslT4qiKP/VqTTUvwJ8LqV8AEAIcS3wBTBJCHG5lNJ7NhN4PqhXKRTTkhzILsKUMMHqSpKrCptk9X8c+7HtHTzSIEQUc4XrBdbJ2vxif47mIomp7nYUEEQfbQWf2N/lucl7eCPnHh7pU68ccqUoinL6TqVNpSnw/pE3UsqfgQFAN+Crs5Os80Py4SJ+XrmfaRvTqJizhp4xmdh1AcAhGcHzxhgqkUUjsZswfCWZOuIATewH6aqtJ4QiaoqDBEkXhpA8aEwAYIVVjx+1AcyXLcjId4Flwq45YHrKLa+Koiin4lRKKvn42lJKSCkXCCGGAT8IIQ4A752NxJ3rHhm/nmW7DwOSsbZXSMqtzFLzKT61fcgeqyI3GzNpLHbRXN/NDLMl9cV+cghir6cSS2RNxtpfY6bZgvrafrxSo4G2l37aUrpr63mq6FaCg4IYdXUT2PgzTLwDBrwDrYaXd7aVfzF3WwY1YoOpFh0MwOp9h6ldIZSwADW3m3JxOJWgMgsYLYQYKqXcemSjlHKcEKIG8DIQf7YSeC5rmxjlDyqCEZ57yZJhRIp8Omqb2CgTedx9K6PsX7LSqsMsswUtbDspkIEkkEFTYzcF0kFvYw0j3HdzqbaGvvpyemur6GusZHO9B2lcvx66JqBWD+g8Eur2K+8sKyeQWeCi3Suz8Fq+91UjA+nfJJ5P5u/ihrYJ/O9K1T6mXBxOpfrrMUAHNgkhjvlUk1K+CjyHr2dYmVi97zCLdh4qq9v9q8YVA3jJ+Ipu+kbmau1YJetTTWRgFybNxU5esI1hqOth5prNaKLtoq3rA/q6R7HQagRAvgxASkgkjZWyDoPcz/Ow9246OkfTo21TLm/mj9XBMdDjWQitWOp5uG3MSqo/PpWRP6/DsspmHrgL0R8bU/FaEEwxLxtfEp2zkU/m7+KW9tUY3CahvJN3QRJCyL/95AohJgsh/tmYeQ4RQuwVQtxX3uk4W05aUpFSpgsh2gLtgB3H2f+yEGImZdDzKymjgKs/XgrAlc0qcVP7RGrEhpBZ4GLW1gyGd6yO3Si7oTft4zwEGHPQvZJ5Xt830U1WIj95u7FDViYAL6NsX1BRywHgCn0Jl7jeYJrVjlhvHpaUXG4spb2+mTbaDjwYdHG9QxrRDPt6JRKYM7JrSVVKaUrPdXLdZ0vZm1UEwK9rDjJvewaVI4IYe2sbIoLspX7PC9m0jWkA9NWWc6MxmxCKGWneR57TQ6PKatbps+gmfLUpGhALvAD8JoRoKstqtlzlGKc0TYuU0hRC5AERwD+KCVLK5cDy0k3aX0xLsjXV9yF8xMR1qUxclwqAwwCXFyqGObiiedl0kU8+XESPD3ZQwXyLDBlZsr2xtoddshJPGj+SZMVTQeRwyAohQ0bQUD/A3cZk3vNezTZRnbrsIVi40YBvxGV0q+hh1pCBtHhtMR5TIoHpm9Po2aAi1WNKJ7DkOz28O2snXy/ew9EFEx2T210/sii1EXd9q3N391rlNlNyntNDiN1A00S53P90fLtsH0uSMokIMhBAHZEMQIzIwZSQme9mX1bhWflicKFJfHyqADoCtYAkYPHeUf1PFhhypJRp/tcpQohngfVAY2DDWUusckIn/VovhKgshFgHrAO2CSFWCiESz3K6Sjg9Jj3emseA9xfx7sx/FJQAX0ABeGXatrJKFqEBBgGGTrKsgIu/vtX/z/YldxpTWCNrU1HLBiBWK6Cqdpgxnp58Z/bk+8DXeU7/ms1GPX6xutNS38lNtz5E0eWf0efj1USHOJBAdZGKfcYT3PP5LJIyzmzalglrDvDZgl20emkmXy36K6Dcrk/hKeM7Ysnhdn0KV+kL2LInmTlbM87ofv/VpoO5tHppFq9N9/1bPv7rBq75ZAn/m7qFPf6xQOeKTQdzeePPbczftJc1m7ZyU0IWd9j+YL7ZiI+9AwFYmJTJ879vLueUnvsSH59aDdgCzMbX23Q2sMW//XQc86VXCGEIIf7nr3LyCCFShBCvHLV/nhDiYyHENiFEuhCiphAiTAjxgRDioBCiUAjxmxAi4ahz9gohHvSf6xRCbBdC9D3NdNYSQsw96vw+R11fCiEGHPW+m39byFH3v10IsVAIUSyEWCGEqCWEeFcIkSeESBZCXHfU+XX8ecgRQriEEGuFEN3/dr+hQojV/vSsEUK0Ps38lDiVksrrQBBwI2ACTwOfAH3+7aTSsD45m5u/XE6u00QXsHBn5r8eX+z2kpHnJC4s4GwnjYggOz/e0Y5P5+3i9w2pJdvvdD+EhmSDrEkzsZM6IhkTjf+zT+IHqwc5Mpia1n72yDh+kx2Z4bgUR7fnSNoaxMKkjfQv/JWHxDjGGj1xOWIYak5nXn4TBn5gp36lMMbd2cHXeH+a3pqxndQcJ7oukEjCKCKPYHrpq0gQ6Uw0O9HL/TpD9NmsdtzF8shxQMNSfGLHN2NzGu/N2oHTa3EguwiX1xftmu7+gu0vLWBS4RM4cbBr7z5W7zvM+Ls6IgRISbmXZH5ZvZ88p5dPbR/RRdtAWu9FjPu6G/XEPr6yv0FT1+e4cHBD29P9XLy4+Esof+IroRhQ8i2tFvBH4uNTG55CiQUhRBDwFL4vwBv9mx8HbvD/HMT3ufWREOJPKeUC/zHDgP5AvpRyl786vyK+Ad35wBvANCFEs6PG5T0P3AXcDbwIfC2EqCqlPNV+/7cBt/p//w/4XghR4TTG/b3iT/ceYAKwEvgSaA2MAD4XQkwC3MAUYIl/n8N/7pdAjaOu9yJwJ75n9AG+z/iWp5iWY5xKULkEuEZKuQhACLETWC6EsB81or7U/bb2AA+OW1/y3pSgn6Rcle8y2X2ooEyCCkDD+HBGD2nBe4MlI8atZdqGNPYYtXB6fF2A9gc1oFa9bvy6+iCT3N2ZdF8HsrYsIGCxh/Hebmj2ANIL3DwwJaXkmlcbqRi6lyIZwNyimuRqQ7hWm88gawFVUzP4dNrH3DOg/Wmn1aYJLMAyJQ8bP3OHPoWe7jd41XM9I/XxTHM8yQ/e7lymL8XApHjm/3C2v4QAm15aj+sfTEvyxcI9bE7N/8e+/alpNNay0bHora3kU/s73HPgAQZ/rrMtLQ8pJdWiQ/j85lYlK22WlY0Hcpm+OY0xS/YDMMVsx0EZw03VavJM4hPM3v0ndawDOHEQ6tBpUS3yJFe86HUEqvPPzyMDqOnfv+gE5/4ihDABgW9mDwsYeFR7yiZgmJRysf/9J0KIp/F9YzoSVGZJKWcDCCEaAZcCraWUq/zbBgP7gcuAif5zfpJSjvPvfwlflVsisPMU8/zVUeePwhfAEoDdp3j+D0emy/IHj+HAY/6mivfwBbwEIAX4HPhCSpntP340MFMIESilLPZf70Mp5R/+/W/ia5eynUaQLHEqrdoxwK6j3q/H9w8Yd/zDz1xSRv4xAQUgwAC3efJ2t93lUEUihKB51UiqBLpYF/scM9v5qnJvaFuNoR2qc1fXGvz5YGcaV46gW8/Lse5fx61PvE+fRhWpGOqgYpiDq2KTed32OU21nWhIYsjhN8dz9NNW0EdfyQBjObXFQf5ce6r/z/3li4W72Xu4uOT9OqsW861mNBR7+Mz+Dh2NLaRYUQwx5rLEasgSqyE/mZdQ/5k/ufmLs9NUll3opsVLMwkPPPZzxBf6YJR3CJ3d7+HGRnNtB8vMeuyXcWTu3UhusZc8p8nGg7m8NXP7WUnfv/l84W4+mJvEiEtrI4DJVgde9N7MvB1ZfHtLU15MWIcjPI46cSHM+L8uRAWrTg8nUQs40YeX27//RB4AmuEbpN0KXwlighCiG4CUchL4PriFEBOFEPuAyvh6tB6x96jXDfz3XH1kg5QyC9jOsUX3o4PHkanKT+cf+ujP1Bz/78DTOH/PUa+LgWQp5ZGFmJz+3w4pZSHwITDIX803l78C49HP4EzzU+JUgoqOr9oLACml5U/0WflLySxw0ffdhf/Yrmkn/8bct2EFrmpRPnPZDe1Ynbkju2IznSSE64zsVYeOtaKpEhnI433rU7tCKOD7ML1xQjpjlu5j9rYM0vJdROTv4I28J+inLaWOSEETcIMxB6c0eNx7G9e7n8aSsNaqzcBuHU47bQeyi4gij3v0SYRRwCYrEQk8YEwknAJcUueQDOMe1/3c6RnJDZ6nmG21RAILkv69yvG/CrDpNKocRkqOs2SbHQ9LHA/wtu2jkm1NRRJ3GVPZIGsyWJ/DLPsjvGX8tX/hjrLvXv70gPr8cHtbRlxaB034quB61gikadqviMIswjNWEp2/lS9uaU2l8KAyT995KIkTf57Y/ftPJFVKmeT/WSOlfBmYB9wL4G+4/xVfqWc8vpqXv89s6zzqtesE99E59vPyeLU0p1Mfe7yV+E50/vFqlP5eTWYd70R/leBy4HZgH77mjJuPc+iZ5qfEObdIV3igjUGtqrAhOeeYahHvKayGOH1L+lmtrjmpoCj+vHQ6lcID+eKrFbw7cyfNEiL49e4OFLtNfl1zgOYJESzfncXa/dkU+6vJ7jMmoQuL19zXk0YkN+iz6aJtQEOSImPYQQJDPE9zabvm3Nb59Lvg392tJp7lX/Ko7Wfu1CczxuzJpfoa3vVczQ3GLMIppJG2j6G2GUxzH1u19veSRGkJtOt8O7wtNZ6cBkAc2Yw0fmafFcduqxIO3PTUVjPTaskd7ofZbGvAdd5JFGMnH98HtQYM7ZB4VtL3b+JCA4gL9VW5PdqnDqYF94TMh6lPQEQo5v9to0W+RUK0CiinaDG+ap8jbSpHePF9o198vJP+heCvb+H3ASOllF8DCCEigAqc+ANzK75A1gJ/aUUIEQPUBsqqJ5AHCDvqfY0THXgKugF1gHAppRNACHGPf99ZaZQ81U+Mmv5/jKNVF0Icc76U8vjds06DTdd49aomfDwvic2p2zEESCFOqeqrdWL51l0Xub3c/f0amlaJIMCmkRgdxnWtq/Lsb5tYvDOTXZmF3NapOnd0qcmsrenszCgglhwG6MtZYdblW6sX4Fstcp5jJHZMrtAX853Zk2VWA/pE18C0JBPWHKBr3diSD7aT+W1tCr+YXemgbaKftoIhxjw0JHNEG+a6m6Fh0VDbx375zxrNWnGhpfqMjqZpgjaJEazYm0NTLYnrjPkUSxtPe4dzhb6Y12yf85jndsaZ3bnZO517jcl40XnbOwgAh6Fxe+cz+Xs7c3d29dfMuCqCbodGVxNiD6JeSLkm67yyd1R/mfj41D74Gutr4PvWbMcXUPqcpJE+QghxZFSwHbgS6AFc7992GOgnhFgARONrpLbha7D+BynlDiHEZOAr/4dvAb6G+lR8Dd5lYRlwtxBiDb7ZSh4+g2sdxvdcrvE/g/bAS/59DnwdEUrVqQaVvzeSCWDG395Ljq2j+8+cHpM3Z+ygQpiD2nGhPNSzNpsP5mHo8OTEE3fPfHbA2e+t9G+C7AZf3tKKDQdyeXfWTnLzC8ib9BHbrRbssuoDMGbRTl5IWM+EYXcyLcnFu7N28kTBrWy0/iqB7JWVeNB9DxXEYSaYnUu2H8h2snDnIR4Zv4E7utTgyX71T5qm7EI3sWEO3Ni41zOCe+vmUVHPJ8G7j3qFwThStzLC9isveG/hAWMCjc09fGxeDoAu4MMhLUr5KfmsS87hnu9Wk5WbTxBmSbfsQgJ4xfiC7bIq7zKYaHKpSjqXa0soxs4qszYVRTZ5MoRir8Wfm9Lo3/QcmCXIEQItjj+xxIif1pJZ4OaWDolEBdsID7Sd1WB9Pto7qv++xMenNuD0x6l8e9RrF77SxO1Syl/824YCH+NrsE8HxuFrw2j+L9ccCryDL4jo+AZXdpdSFp16js7IfcBn+Nqvt+Drwfbrf7mQlHKZEOIZfIExBN/zuRcYi+8ZzCyNBB/tpIt0CSG6nurFpJTzT7TvdBfp+mH5fhKjg+hQK6ZkW2puMe1fnXPCc0Zd1Zjry2lKjCK3l97vLqBL7Viyi9xM25jGg/p4HjQmsMaqzVvmtSy1GtJTW8Xn9rfJavMo0f2eYs62dIZ/s+qU7/PWNU3wWpJudeOocAq93J6YsIEfVyTTr1EFZm/LwJJwSb04ZmxJZ33lNwg+tJ5MQvmz0r1cnvk5Uzyt2d/6GcYu20f1mGD+HNHlTB7LCX08L4nX/tzOWNur1Nf209X1Frfqf7JRVucb+xsUSAczrFZcpS9mvZlIU30vlgRNwGT9UlY3eYHxaw5yV9ca1IoLoU+j8lvM7KtFe/hi4W4m3tvxuP8m9/+4lq2puSRlFGLTBR5T8vXQVnSvV6EcUnt2CbVI10XvVKZpOWGgOEIIoQGXl0qK/Ia0/WdwCAuwUa9iCNvSfAMBDQ00TcPttXjn2qZcWU6N9OuTc0jLLaZeYB6PrruBT70DCOdSHjQmss6qSTNtF3cxmaVWQ+ZZzZhc7XEu63Ynj/+6AU3Aze2rMXbpPgDsuobb/GebW4hD5/G+9enfJP602o1uapdI1aggpm9Ow+2VVI4IZP3+bGrGhDA38UE2p07nSduPRB+czT3R77I0TRC6Mpm4MAeOs9Q+NWtLOvv908MstBqTLOOIEflkyDDeN0bjlQJTCtqKbbzsGcKjxjikhG+8PWnS9Soa1unAl1MPUODy8uYMX43rE33rcUeXGghRxmNXXPlUzl6GoVfg6FsnHy6ickQgmiZ4f3BzWr7k+0Lo8Vfj3jZmFVWjgnhjUBNaV48u2zQryll0Rq2wQogK+HoV3ME/u+mVumCHwZ8jujJ3axoT1qZQ4PQyd8chWlWLLLdvqoUuL8O+WcnhQjfDmkWw51AlDhFBLiFc636GFBlDtMgjXUYSQQHDjD/JrnwXVkAks7eu5lCBm0CbTqdaMbi9Ft3qxhAeaOePTWlsOJBDvtNL1zrRvHhFYxKiTn+qjwbxYTSID+P2zjVwuk1avTwTXddoWzOUVzd4yDZ7U9eRxdXMwDz8MUu5h5euaESvhhVKejaVtq8W72HZriwAPjcH8KXxGgscDyElCAEmghDhIlQ6uUmfgcsexX6XwXdWb6b3uJ5pG1NZl5x7zDVf/WMbhq5xa6eynUvQnP8mvVe/y1euZxj0CVzToirb0vKZujGVx/rUY1iHRNq/Opt8p4sjnYcEFob0sjcLXpm2lYn3dirTNCtnhxAijpOPM+krpfxn99YLyH8KKkKIzvjq5a7A1wi0FV9wKRPd61eke/2KFLi8LNxxiF4NK/6nUealYdPBXA4X+nrjfb2ukK95idhQO+S7WSV9KzamyBiC7Roj4tZye+YERq+J420ZwaEC33mWp5gVu01MBG1rRHFP92rc0K4aTo/Jkl2ZdK0Td8b5s+katkCNIdUL+TopkN/WHZkFwM7DRTezQ49mqdUA8AXvIPvZ6xg4enBzsgvd3Pv9GqIPLaOHsZ4jtbAS0JC+RjoBCSITEVSFm8I/pY1nC7Ztv2FMHssC+0Yud7/EAH0l080WHCKSyKCyX7PkpYPNCfMMYresyMjc9xg3+xK2aLXp37gidkMwf9tBHnB/zs32mfxoXsIL3lt42/YRHbVNdHC9z9rkXGZvTadH/QuvKuwilIVvzMy/OVgG6ShXpzylrxAiWAhxtxBiA75+4IPw9aK4VUrZUEpZ5qtAhjgM+jauVG4BBaBp1QhCAwwMTaD7u54fyv+ry/cLxte8bfuIQrfFckcH0gZ8y1hnF6JD7FxaL46a4iAbHLcxTEwm2KHx1aLdOD2+6/ywfD/Dv1nFtI2px733ads8kecO3Ma7dTYeszmUYj41L2ODrIlNE/Sod9bGtQIQE+KgdoVQbqjlJM8WTQF20q0wpPD1+Djyr1nyumpbJl0Vyqi8x5G/DKWduYqq4hAjjV942fYltxgzaF0tgkrhgZTVxLSfzk+iw6uz+Ga7jdHmVdQVyVxvzONx4wcuqVeBD29oyTfTFpLz830Ms81AQ1JVZPCd/RU6iY0stRrg8X+n+2juvw3DUM4XUkrzqDEzJ/opPvmVzm+nMqFkQyHEh/iG+3+Irw/1I/imALA4i7MTnw8E4PKYtGYT2x23MEBbQl2xv2R/LZFCXZFMZbIYfeBati7+nX6e6ezctIpZ2zLIlSGsserQSNvNJa75FLotdh3ytRkNaFKJhy6tQ5fSmi24SmtodiN9+11d8sF9nT6XdY47aCO2IoDxd7cvmzm1LItb1lzHeO1JQnBTUc87ptO8PPr33iXweTekNJESbFh40LjJmM02qwpfefuycl8Ogz9fxqPjy2Zi2ndn7SQl1zdOLowC7jZ+J8WKYpbZgiK370vB45U3cJ0xn5+8XdkhKzPJ7MgSswGzrRZ4pMFjxk8AJQNjFeVCcCollY34RqG+DtSXUraUUr4tpUw5yXkXBbuh0bdRJbJkGDtlZTpqm5nueJxWwjdOarNMZKtVlSJspMpouh4ez4u2MXQ59AMA+QSyR1agp7aGWwIXcEuHatSM9Q1yiAsL4MFLaxMeWErVOuFV4IoPcVSsw4OX1sahC1JtCazSm5BCDA/2qEXTqmU01mfl52A4sOElX/fd83ihLM2WQG5hIUgLqQfwbPirWJaJXVikWhFYaISLv6bmcXuPO7C41CX6p7KPIJ+p9qdoo21nhtWKgfG5fH1ZFBRn08RIZmzgzTzhvZ1R3iG8Y/+ELMIJFk6uMJbQQ1tNnQohtK0ehakWSFMuEKdScb4J35w3VwABQohxUspNZzVV5xEhBO8Nbs7igKXUX5/MVLMd33ovZYesCkBbbSuNxW6KCeA97xVcq89nYeAlTMirR4hdJ8qTzXXGPBYHXsKIvMH82qF6mcwKMOLSOoy4tA4A6Xl3MHR9Cje2O/uz6WbkO/lgThKP58whyOvEAELlP6f1PxJgKnn2s9teh2B3AYbp5OEKq7k+51Xu8o5jq5XAw7bxRJLPHirhMASvX9PkrOcBoGViJFvTfOPGPOh85L2cIOGh0aEpcKAfe221SUiZQbZ5BRKNnVY8f5qtWG7VZ7dVkUu1NWyXCeia4KGf1yOh3KYYUpTSdNKSipSyCb5VH1cD9wPrhRAbhRBPHTnkLKbvvNGxWz/MxtdRv+cwnvEOJw/fN9k3PdeQKqPora9ktP0jNtqb0XjAPXRq3og5D3fj3qsupavrHTx932HuU1eU2mJcRyQfLuKLhbvxHKeb8hEVwgK4rXONsx7Mdqbn8+ykzUxbuoEvg4ZCZA2Ib+Ebif4vaiQkYty7AmpcQnjSRNwigEVNRvGpNZB6rm9YI+tgaIK3r22GwyibaXpeGtiI3g0rkEMol7jfBiG43ZjC89ZtuBsPYcjkfHpY7zPaezUAo20f0ltbxd36JKpoh/jRvIQ/zDYkZRTQMD6MdjVUt2LlwnDSwY/HHCxEIL7pD4bjG/kKvumj3wYm/9vynac7+PF89tLkzczcmk5qrpNlxh3Y8bJHViRZq0zvwQ9iLB0NrW+DhlcAvg/+qlFnZ56oV6dt5dMFuxl3Rzva+j+4sgvd3PL1Cga1rMLN7RPPyn2P539TN/P5wr1MsT9JFXGIcN2NsDwQFANF/zJxZfOboU5vqNoWPmoH9frj7PsO3y3bR7saUazce5ge9SqQUMarK67ce5ibv1xOsceiishioH05k+39SS0Ej786KwAXv9hfJJx8YkUeXgTLrIbc7jl25o3R1zfj8maVyzT9Z4Ma/KicVr9Rf8+Fr/EtSFMXXzfiG4FJ+KZirlnaCTwfHS7ykJbr4tJ6cTy49T4sdET1zkSHOOgXEw4HVkL1vyYqOFsBBeCurjVpnhBJm+pRbD6Yy//9sh6P12R3ZhGbDuYyeX0K397a9qyXUpwek59W+Jba/drbh0iRz4P26YRYmYi/BxShgzxqAtHNk2DtWLjuB4rtEeS7HcTZdG7zz/vVqHLEWU37ibROjGLts7249K35HMiJJr3RHTRwenAn51JYkEe+Zedp41saiT1MMjvwiPcuIkUReTKAh4zxmAFRTLL3Z//hYqpGqsknT5cQ4u9fYvPwfcl9QEq55zinKGXgtEoqx72Ab1LJgcBwKWX/Ex13MZVUnB6TnCIPFcMDyClyE2Q3sBtH1TR6XWAcdz67s+rlFx4l2wWP2saRKcPxoPODbRDPPPIooQFnd4xHvtPDJW/O43BBMTY8jDAmcKM+G4GFo9O9GFk7oPAQFGdDZHXYOYNjalbtodBgIKz7jil0ZULiM4zoUZuqUUFk5LuoW7H8elDtzypiR3o+zRMiaPnyLB60/849YjyvegfziDEOHUl/9yuk6FUo9q9sudJxFykyhoHul3lpYENuKsMS49lUliUVf1C5Cd/cXBoQC7yAb1LKpv9Wc6KcPWc8ws2//OWv/McJzy5EATadiuG+b/4RQcdpLyiHgAIwUvsJt90kWBahYREinFQQh8/6faesP8gDP61Dk15WOO7FI3XiRC67AhpRw7UZPe8A9H8bZr8Aeamwc/o/LxJdC9Z9B0BRaDXmbMtgzrYMYkLsZBd5WPXUpUSW02JYCdFBJdPcB9o0Nnsrs16vzvO2b1lm1uMp761UEZm0kDuZILpRjRR0TCaZvrVxfluXQqfasaXennaRyJFSpvlfp/jXT1kPNAbKpn+5coxTGadinuLPqa6trJSD3u/MJ80TQDgFJMsYurrfpYHrKxZEXIGhnfIY2P/k84V7sCSEUkQ4BUSLfIZ7HuZm5wjGiT7M2mey65s7YN33YLrBFkhxv/e4rcpk9la5HDQbVOsAHUfgCk2gUvYaGgpf7UZmgZtL6sYSUQ6j6f+uwOWl2GMxj1ZkE06BDOAF78306tKZJwJ+5WXjKyxp4UEnFCdDdV/wXLUvmxd+P/Hs2xeN58MFz4d34vnwof7f/2XA1DGrtgkhDCHE/4QQe4UQHiFEihDilaP2z/OviLhNCJEuhKgphAgTQnwghDgohCgUQvwmhEg46py9QogH/ec6hRDbhRB9TzWB/vNvF0IsFEIUCyFWCCFqCSHeFULkCSGShRDXHXX8ydIjhRADjnrfzb8txP/+KiHEZn9ak4QQdx51rE0I8ZoQIk0IkSOEmCKEOKP1JE6lpHJkWvv5wO/4lq5UzhOr92Xzx6ZUdqQX8IK4ieds3xIhCnDgpogA+jWOJ9B+dttTejesyPoDuWQTxvOeodxvm0iyjCPdFci6KgMYdegeEDDKvInqDR+msLakcWw48/cs4y7bLqpJDzkbplJQoz/xzsN0NvaTzCye9N6OoQmubZ1Q9hNJHkeIw+D9wc1JjA4md95a/tweRJ0og+5Lb2Fy3DDmH5RINJJlBb40+1IofTMahwfqXNni/G+kPyPPh1fjn+up7Ob58D48n7vvVC7hX+XwKWAdvvF14Js2/gb/z0GgD/CREOJPKeWRNeqHAf2BfCnlLiHETKAivnXj8/FNGz9NCNHMXzMDvmWL7wLuBl7E185c9TTWdH/Ff989wARgJfAl0BoYAXwuhJgkpXThqwU6WXpO9EzigJ/86ZwFdAW+EUIsk1Kux7e2Si98M6RkAf8HzBFC1P+vo/9PZer7WsBgfL2+quBrlP8BmOlfWviUXExtKmXlYE4xz/22mQd61KJJlYjjHvPsb5tKZkCuHOHgYI4L33cE34fwhud7EXaW21MsS5as8Ph3jdnF5IBnkAi+Dr+b9/K6IaUkPiKIbWn5rHfcRrj4axmLDWY1RFgVHvfcRnzlqrw2qOk5uQb8lpQ8npywgfiU6bxve59Vnb7gpnnBtE6M5GBOEXuzjv17fe/6Zgy8WHt/+UokWzj+yo87gYY8n/uPDyp/m4oT39K8At8a7xYwUEo51X/MFUCulHLuUecdAP4npfxYCDEPKJBSDvDva4QvILWWUq7yb4sG9gM3SiknCiH2An9IKe/272+Cr8qtjpTy6LXej8t//m9Sygf971/D16O2opTSFELUwzefYh18C2mdLD0SuExKOcW/vxswFwjFt2LlGqCXlHKmf/8l+AJvMZCNb62Ypf59mv/aj0spvztZXo7nVMapJEkpX5JSNgS64FsB7VN89ZejhRBt/8uNlZMbv/oAzV6cwY70fNj+Bxw+tkPLvsxCZm1NZ+PB3BNcAR7vW49pD3Rmyv2deMg/2PFIQLmmZeWzHlDAt8Jju3gb0+xPcJ8+8Zh9G6nJPe4H+K7lz7yY3oncYi95TpNtafl0rhXDE8ajfOXpxcee/pgSmuj7aFy4mOD83czcmsHKvWe/Tei/aBAfxqT7OpHY5Qb+uHwNbXsOYutLffj+9nbMfbg717SsQrsa0Xw8pDkNKoXRMD68vJNcnjoC1flnzYmBr0dpx3+c8ZcH8E3i2BRoha8EMcH/wYqUchKAEGKUEGKiEGIf/5xRfe9RrxvgKymtPrJBSpkFbMc3CPyIo4NHnv/36Xy7OfqPuRhIlrKky6PT/9txGuk5kXX4CgEz/FV8bwKZUsrD+J6tA5glhCgQQhT481IJqHsaeTnG6XYpXo8vIj8uhOiEr/Tymz8xP0gpn/2vCVH+KdiuExVsJ7A4DX68ns3hXYgf/gOR4aEkpefTtGoEK57q8a/LCgfZDRrE+5a7rhIZSPXo3cSG2Hmif32aJ5Td8svDO1Un7k+TKI/JlfXimbj2r1l+plnt8ByOBDJKtumaoH6lUH7PaMw8M4ERxni2ymokeSuRK4JZJesihK/K6Vz2aJ96Ja+PTHwqhOCNa5qWbO/b5BxYubJ81cI3p+DxerC4/fv/vvrsEalSyqNn5Fwj/ppFfZ6/4X4E8BUwHt/SvPP+dg3nUa9dJ7iPzrFfwt3HOeZ06mD/Xm11olqfU03P0Ur+KPw94G4QQrwFXIZv3asHhBCD8JVIAHpy9B+fT84Jrn1S//kvUkq5yF+MPAg8hq8uUwWVUjLg/YVEBtn5ZmgbPp6fhOm9C5Hp4X9vV+Up+0i+z2+BoUHSKyfsxV3ihi+WER3sYPTg5sx9pNvZT/xx9GpRm8w6a3jnjXlcHWAvWQERoEudGKpFB2PTwOP/0zItyZil+3B5La7Xl3CHMY3HPbfxk3lJyTWFpFy7EiulJokTf8u3+/efDsFfJZH7gJFSyq8BhBARQAVOHAC2+u/ZAn/pQAgRg68aadtppqM0nEp6PEDYUeeUNLT7q+ZukVKOxFcN9oIQYjpwDb52Fi8QJ6Vc4j/ewNcG8xFw4mV2/8VpBxUhRGXgWnyNRq2BHcC7wI//JQHK8VWLDib5cBGXvDUX3xyJXagtDrBW1iaiaB+36Sl8Z/ZkT2bhSbuiSnluzKUTE+Jg9TM9sRsaA5vH88XCPazbn83N7RO5tH4Fnh7QgMd/3cDPq5JxGBqf39yKn1clM2NzJ4RH8ru/C+4RfRtVJCakfLpnK6VqMb7FrY7XprLLv/9EIoQQFf2v7cCVQA98tSgAh4F+QogFQDS+BnIbxy8VIaXcIYSYDHwlhLgHKMDXMJ6Kb836MnWK6VkG3C2EWAPE4yuNHZED3COEyMO3Ln0ivurCV6WUBUKIj4D3hBBOfM/6CXwTCN//X9N8SkFF+FZ4HIQvkHQEkoFxwN1SyrX/9ebKiUUF2Zi6IZeh+p/cZJ/Jte5n2SmrMNz9CBsCfOuh2Wx2QgNOXlL54fZ2Zzu5p+zIINDmCZF8eMM/q99GXd0EKaHQ7aVT7Vg61Y7F6WnKUxMSCd6ZScOYYJ4bUJ/Z2w5xRfPzv2FbAZ7PlTwf3od/9v7aBfQ5XiP9Ub496rUL37f326WUv/i3DQU+xjcxbjq+z60coPm/XHMo8A6+D20dX6+p7lLKon8552w6WXruAz7D1zSxBV+Pt18BpJT7hRBX4Qumj+NrmP8KeN9/7qP4qt7GACH4SkO9pJT/eRGnU+n9NRtfA/0hfHWSPx7pKXA6VO+vU5eSU0yn1+bwjfEKdUUyXmEw0PUymfgacwdoS2kidvG97SrmP39NOadWUf7yn3p/HeHrBdYRX4klCVh8koCinINOpaTSHV+d3QF8vStanWhMgJSyw3F3KKclKtjOE1W30CVjE6YUtHN9SCbh2HWBw9DZG9MLGRXMoIphJ7+YopwvfAFkESdulFfOA6cSVMZyblTJXxRu+WoFSfv2Uc9wUN3bnDFmTw4RgS7AbUoSrT0My5jM6ymDubN9N5I+vZEVoZcS3bQPvRtWPPkNFEU5K/wDDXef5LC+UsqFZZGe8nLSoCKlHFoG6VD8dqbn8Zz1CT28q/HoBrquEeUpoK++gkMygp2yMlfri9hvVSByzPPEc4g5psUrG4KpGDOGyA43k9Dh2vLOhnKOS8kpJnfFD9Rv3AoqNT35CcqpyMLXCP5vDpZBOsrVSYOKEMLi+CUVL76HuAzf6NTVxzlGOU1/jujKvS+tZLNVjQhRCEjes38EgFcKNsoaPOu5hSwZThiF3Op+hEWyMZVEFvXyl/L99EiGq6CinMTbvy3lzT3/x75lVbg/8hN+v78zGw7kkBgdTFhpLV99kfEPXjzd7s8XnFOp/rqH4wcVDV8XvS7AQiFEZxVYzlxYoI2FVhMW4lsWNwAXThHIHdpvZMlQ6olkYsjlAdtE5ptNuExfQiu5g6+tvtwX/yOt6lYv5xwo5zyPk5ezRgJQzTpAXsp2fl5ZjUd/3YihCZY92YOYYDskzYKEduBQY4GUU3cq1V+fnOwYIcTHwDP41rFXzlC16CD2Zfl6C16nzaEJO2jt/oQc6RuPUonDXK0v5HJjWck5RZ4APtozkE2H93Nnt9rlkm7lPOEpIiBvT8kMcD/Y/seu37/kaT2BtbIOmasLiUmfClsmQueHoccz5Z1i5Txyxot0AQgh2gC/SylP2FKsuhSfutwiDwt3HuLBn9aSZB+CEPC9tztd9Y3c7h7JVlkNGx7G2kaxyUokicr8YbYhj5ALasEn5Sx6uwEy7yBIEMI3QBZ8rw9Y0VTRslgv6lH5mjeIadDllC97Rl2KlQtCaU2clApc1DPilabwIBsDmsaTVehm8x9VaaQn48ROJHmMsb/Gpa7XySOEwZ5jv0FGBBoqoCin5o55iJR1LF++kLa7RgO+gJJn2amiZeGV0JRtTJ77O5edRlBRlNIKKon8c0Iy5QxViwrids+j3Cqn8Yn3ctJlFDfos4klmzxC/nH8W9c0K/tEKucXy4Kp/wdGAPQdRdvACNg1GvyllUDhwS01DCxm0ZZqfR8q7xQr55kzXvJPCBGIbyLJmWeeHOVo9SqFoUVU4WXvTWQSznyrKdW0DMY4Xv/HsYE2jR4NKpRDKpVzntcF896A91vB1JGw+mvYOcO3r0JDiK6NhUauDGCO1YIVVW8jWavCmsD2NKmhpsJRTs+pTNPywwl2aUAE0BLf1NFtpZQpJzhWtamcgdwiN01fnImGl0n251hiNeAN8wZM6WtoffOaJlzeNB6bcXZXcFTOcV43zHkJGlwO+Wkw/3VoNAhWfAJ5/j/NKm0gvDL0HgVh/iZQKcktKOaZKdtYuCOTT29uRZMqvtrsANvp/T+l2lSUU6n+qnSC7R58M4COAr6SUmaXWqqUY6zc53u0MaHB1Hl0FRvXHGRSlXAmrT2Iy2Nxdcuq5ZxCpdztmAEHV8OS0bD0Q4iqAVk7IXMnJHbyBZWYunDVZxD1t27nQhAeGsTowS3KJ+3KBaVUen+dClVSOTMT1hygXY0o4iOCyjspyjkk3+lhzfp1dP3jUpw4CDh6TaewKqDb4M4FEFA288Spkopyxm0qStm4qkUVFVCUf/h68V5umZjBr95O2KSL72yDkAkdILY+5B2Aq78ss4CiKKCCiqKc1zrWjCHApjHSew/DY37ihugdiKhEGPAONBgIEQnlnUTlIqOCinLWzNicxifzd5V3Ms5rO9LzafDMH/R/bwGfzE/imk+WkFP01/LoSYcKcHosmlYMZMw9PRGufFj3AxRlwbVjISS2HFOvXIxUUFFKnce0GPnzel77cxtvz9yB02OWd5LOS7nFHi5/fxGGJ5/WGb8w5o9FrNybzZsztnMwp5i9mQUUujz82mAREwsGQ+5+uP4HqNMHYuuWd/KVi1RpDX5UlBLTNqQydUMK3erG8ulNLU+7W+rFYOOBXKJC7EQG2fCYEkMTBDt8f44pOcVc/dFiUvN8je7D9Zk8avuZ54yxvOW9Bve2KmxZvYDnbA+RUqQxvVcDNKs1BERAVBQMGVeOOVMudiqoKGcsu9DNwA8XkXy4GE1QMn7mxnbVqBWnZrj9O6fHZOAHiwh2GBS4vTgMjdAAG88mbqNvFSfOBneRUeCmqkhnrO01Pvf2JccKJEIrJl5kYhYcpqO+iTAKadOsLnW69wNxU3lnS1EAVf2llAJLSvYfLkbiCyiG5lsrISmjoLyTdk4a+ct6bBrku7x8ZbzGF7zEoXwXFbaPRVv4Bt8s2glScps+jUSRRid9EwtkE4qlQRBOButzed97BddZU4kMNDjR8t6KUh5USUU5Y9EhDhpXDmPjwTxiQ2zMHtmNApdJfERgeSftnDNh+U6Gb7uDkUY+c6zm5BNEGIVU5hArWr1D/Vax/PrpbqSUBOAmj0D66SvJtgIJFF6uMJaSIcO5TF9KfZJxVu4LNC7vbClKCTX4USk1piXRNfWt+UTcXotWz/3GVH0kVUQWxdho7vqcRY4HyJUh9PG+RaVwB8nZThJFKvMcI/FKDUNYJVWK+QTyjucanrePxSsFM6xW1K1Zi5o3fwha+bddqcGPiqr+UkqNCign5vZatPnfTAKtYiJFPgBBwsPN+gze8l7L+94rsKQkOdsJQFUyKJI2dCykhLvcD5JNKGEUs1A24jXP9dzjfpAe2lqq7f0ZXHnlmT1FKaGCiqKUAUMT5BZ7CaGAQNwU4WC1WYP/M35hkdWIBY5uWBKqRgaiC7jOmEeQ8PjWOJGB7JcVCKWQP83WHJZhVBUZmEInXUbyQeBduGxq1LxyblBtKopSBjRNUCM2mF2HKvOsdxjP2b5lptUaJ4Fcr82lYWw4w5P70KZ6FBPXHORpz3D2W3F019cRRiEf29/jXe8g/rDasNjxAEHCTaonki7u9zA8cFfZ1GIrykmpkoqilJGPbmjJda2rEt75Lib0Xc0n5kBu8DzFJfo6EtOm8+mNLdlwIBcLyCGU183B9HWPYoNVk1iRx5X6YnJlCGkyEoB22jYEFhFBdjUWSDlnqJKKopSRuhVDee3qJgA8NG4dVSICyCp0M8j9HA5d0mNLOonRQezMKCCMAobrfxBLDn2NlXzouYyvzH600rZTQ0tnj1WBjvpmWokDvHLHjeWcM0X5iwoqilIOQhwGVaOC+f3+zszYnMbEtQf5bd1BasWGcEU1N3EH5jLCNhGALBnCvbbJzLZask0m8IfZmq+9vYkUBUTUa0XtCmqAqXLuUF2KFeUckFvk4aWpW5iw5gDTbY8QI3JYb1anm7GJQ1YYUSKfBz330Dwkl70N7uTbZckkRAXy/W3tqBp17iyJoLoUK6pNRVHOAeFBNtbtzyFIFuJFY7bZgi/MAQBskom87L2RwfZF3OT6EdNZQLXoIN66ttk5FVAUBVT1l6KcMy5rVomG856jrkhmJfVYJBvzgPtelloNKLRFk1n5MrRGITzRvDWhAbbyTq6iHJcKKopyjuhUK5ZZCxtTaDp4znsLIPjd6ujb6bFYmqbz/u0dyzWNinIyqk1FUc4heU4Pb8/YQaXwACauPUj9iqEs3Z1FZoGL3+7tSMPKEeWdxH+l2lQUFVQURSk1KqgoqqFeURRFKTUqqCiKoiilRgUVRVEUpdSooKIoiqKUGhVUFEVRlFKjgoqiKIpSalRQUf5Vsdvk5SlbWLE7i6wCF39sTMWy1OIdiqIcnxpRr/yr3ZkFfLFoD18u2gMCpIRhHRN57rKG5Z00RVHOQaqkchFzey1+XL6fA9lFJzwm2G7wgvE1ixz3EyB966fP336IKRtS6PL6XB74cQ35Tk9ZJVlRlHOcKqlchFbuPUxCVBC3fLWcbWkF1I4LJsRh461rm1IjNqTkuBd+WkCljPlUrxSPlrGKPtoKJlpdiAgy+G7ZXvYfLmL/4SKW78ri7eub0bFWbDnmSlGUc4EKKheBYreJRJJd5GHy+hRG/bENmwYeCyLIx3FoF730FQz/bDAVY6PQNcFb1zYlfNPX3GFM4EnPcHrasnnL9gmi2iVM2JF7zPXTC9zc/d1qooIdXNakErd3rUmYmkVXUS5KKqhcBK7+eAkHsgvJc5ol2zwWtBJb+dH+CptlIs20XUwpaMehgGDqVQpjd0Yh33l7kinD+cXshk16GWH7lcF7n2YCz//jHnlOkzxnEe/P3UWu08uLAxuVYQ4VRTlXqKByAcspcvPylC3sSM/Dax27L4QivrWP4jChfOwdQDT5fGx7l/X5DakXGkZtx308OqgTL42385HtPSaZHZlsdiCXYAACcTJMn84EsxNpRJdcNyzA4NpWVcsym4qinENUULmAfbt0H+PXHOQ14zM62TZyiestXNgBcOuB/GBeyjqrJtOttvTWVlJZZFJFzkNLAfPLKWyxPUQo1eisbWC3rMiz3mEl1+6gbeZR2zgEkl/NztTSUlhkNaZOhVAaVQ4vrywrilLOVFC5QJmWZHHSITQssmQou61KBAY4cDl9Y0zcpmC21pyNVg0Aplutaen6hDriAA/q4+lobOUez5fMFc/QyvUxgRQz1f44s80WvGMOYo7VnNvcI1liNeTryG9oW7yATdcuol5d1dVYUS5mKqhcoDymxaq92TxjfMtgfQ7dXG8TFhJAq+phpCetZoicxmBjHuO9nRFCMsozhENEsELWZ6lsSEe2EkcOXzre4ee4EVyX9iY1tTQaavvJJZgvzf7MsloC8GJOHz7u1pNGDRqXc64VRSlvapzKBSrApmMzdFZbdVhlb0UuwVSKcDB3WwZXydkMNuYxM7gf6TKSq/VF1NWSqSIO8b7xHn215Ww0EwBIJI3H0h8hinykhGKp87jxEx21jRh4qSbS2CwTuW5NQ35elVzOuVYUpbypksoFyrIkEUEGf+S1Z6Xohkdzsy21AFNKFlsNaGtt4fms3qQQzXirK1VFBuPsL1JZZAHglYJCaSPXqIDNm48NN0JAoRVEhCiks1jP1cYCrjIW09/9CptzE5m8PkU10ivKRU6VVC5Qy3ZnkZrrwpRQKTyAr4a2JtiuYTcE1+gLqCeSiRa5SDT2yErEkksMubznvpwiaccQkgA8VDIPEEMuEVoxUsJYsxerrNrcaUzjcn0xG81EREAk3erE8s61zco724qilDO1Rv0Fyu21eOT7xQTt/J0J3g6Ymh2vBVVFOt/YXidK5NPG9RFv2z7CjcFIzz2stw8nTDjZIGuQbMUy22rGk8b3RIsCskQ0MWRxyAonVvgGP1qALmCZWY8xZi8W2zvx+S2taFs9+t8Tp1yw1Br1iiqpXKBSsosJ3fErrxqfcZm+tGScyu36NGpqqVj4RtPHiWxaiJ100DZRRCAA73sG0ltfwdu2T4nVChACIu2++b0itTxSZSSmEOgC3FKnjbaNN22fkuf0cuPny1i441A55VpRlPKm2lQuUL+sSSZPBjHdbMlUs23J9ve9V5Irg+ivL2eW42Fe8dzAq7Yv+Mj2DsE4EQKGGLMxhATffwhAd+chABuSAhFEqCwiBBcFBPCH2ZYK4jB2PLgtG0O/XoHd0HAYGvMfvYTwwPN3ypbsQjdOr0mlcF/AdXstNAF7MguxJNStGFrOKVSUc4sKKhegX1Ylk3y4iOv0ebTSdmD5C6Sf296kgEAe8txDAYHcoM/mNfsXzDab0lnbhE1IVpi1icIXQCz+KsoK/28JJJBOjgwhSLhYb9VkqdWQD+zv84b8hGe9w8iVIRR7LIo91nm/9srwMSvZmpJH/yaVaFQ5nFembSXIZuAw88n2GNSJj2J4x0Subqk6KCgKqKByQfp22T42p+Sy2LqPcFGICzsCi2qk4RQOHtLH86BtIuvM6iRwiGBcaPjmBYsij1p6OgCa8AWRv3MIL0HShQeNJvp+1lip/O5tx0BjKRqSdbImX5r9CTQ0IoPtZZjz0pcQFcTWlDx+XXOQtC1LGMFS8Ejutk0GDW5P/T9entqeypFBtKuh2pIURbWpXIA+vbEllgVZhLNbxhNJHmvsd1JHT6GR2EOqjMSSsNBqTIYVRnNtJxpQIB3U0tM50ndDyr9KKBx5LWG3VYEwrRiJRhQ5dNE38Ij3Tp7w3EoNLZWHjF8B+OzmlmWf+VLk8ppMXpdCG2st3UMP8q18gnttv3OHMQXhfx6f2N/jE88zPPTDClz715R3khWl3KneXxegqz5azJr9OSXvwyngd/vTFOFgrLcnP1qXEoSTIgKIJpfJ9qeoJA4jAQuNXaIytWSyrz1Fs6FJD4VaKE4ToskHQAj4iv5UNDPop69kstmO+z0PEK/nYFgu9Oga/Hp3B6LO45LKp5+NJnffRh61/ewLsALcUsOGhReBhkQDsgjhoBVHU3033DgBavU46bXTc4t5+JcN2HSNr4a1PvuZKSOq95eiqr8uQHUqhJYElUu01bxr+4g3vNexV1bkW/soDI9FQ7GXWVZLZlktySaEcAqZYzbnMmMZiTIFvaQRxYMUGiFWPsusZvTQ1pXcp4o3hXwRQrKMZbLZDoAUMwKbLtj5cLcyzXNpm7N4KcMPPo/bEGRbQYSJYrxSw46JEGD4v4wJAQfMGJrpuymQDrakmbSp9beLFeeAMxciq8G6H5CzXyQk7zC7XG+QQgymJdE18Y80KMr5SFV/XYBu61y95HVlMgmlmBv1mUTJXLZYCeyzYrlKX8glmq+65lb3Iwxwv8Kr3sF4pIZDmEhJyc++sBYABIdF4kbDiUGeDKSHvo7LtEVc43qGGVabknu+elWTss1wKXtj+jZ2zfwcmzAJFl4itSJ0IZFI8nEAvk4MRzTV9gIQIlw0W/U4eF2w/FPIT/MdMH4YfNgWPMWQsRUK0gnEhYEXTaACinJBUSWVC1CtuFBsmsBjSb61euP02HnD/jl32qbSQNvPXuLp4nqXw4Txte01dEye9gwnhViKpIMQin3fNgQgIS53MwDxwQJXgZ0w4WS22ZIDVgy3G9N4yJjAY947Su6fVegql3yXlumb0gh0Nae9bRW1RTIaYBMWOTKUCiIXKSHdCqWSlo8pfQNAj1SP2e0O2LMA/ngUirKg+5PQ/EaIbwG2QOj1EqLt3WRlZ3JHWhjRwY7yzq6ilCoVVC5Q/7uyId8s2UezKhH8tv4SUtwxPKiPxyltpMtIXNgZrv9BNZFGdZHOfMf/8ap3MDtkVZqJJDQsX8O8AIFk/+A5DJlwmBzXDdxvTOKgFcVyWR+H6WWO1bzkvhqQnnt+B5XsIjdJsgb1xT40wCl1NKCCyEX4A0i87ptg00QgpDwSfxHDp4M9GK7+8q+2lUZX+36OCI8nJjyeGxPLPGuKctapoHKBurZ1Na5tXQ2A5y5vyCVvBfBdXh515AFs9kDcbg+PGOPYJysgBJgSPOhMs9rQWt/BQSuKyuIwHqnR0fU2Ayb8SX8zny0hNfmioB+rAu5mltmc2zyPHHNfC7i0QVw55Lj0VAwPIKvQQy7BRIlCAv3VgQBHht0cqbCyIUu6XQtALvsY0e0xaDyobBOtKOcI1aZyEXDgZmKlb3Bi503vdRS4TSQat3pG8oP3En4zOyARNBT7+MXsxk3ux4gReaRYUQxwvUKlSgk85hzNE96P+db7MM8ZX/OA+z5e915fcv1PbO9wjT4PmwbVooPLN8Nn6OWBjQCYazbB9Lcrga96C/zjd/zVXULAgfAW5MogCqUDavUsp1QryrlBBZWLQVEWsfumMTB0B/fpE/nANpowh8bV+mJetI/BKTUMIRlkLGSgthgHXj42L2e090oO2qoy+f5OOIb/jkjsikfqXGasIMlel7yQmgAE4aSTtpFWxm5evrIxlSMCyznDZ+bPzekkiHSuNpaiC8iVgSXVXpq/VHdARiIlFBFAYfM7mWD0JVCXiKCI8k6+opQrVf11MQivgvi/LUSnWrQbdwt1zJ0UFHv5QL+a+WZjemsrfd/IgeHGn1QXqeyTFaiqH6KFPRNNG4CmadDyZu5J7k0951q2mZFYTjeGBtIRTZvij+jbvDpvtU4o79yesVs7VWd7Wh7P772V/nIhLbQdLDAb0VHbRLF0ECJcVCabPHssYd4s6u/8lPrPzAF3ATjUXGDKxU0FlYtFSBztagNP/sHSpDQif97MnoJY9hCLgYldmDzlGUovbTUv27+hqshks6xBk84DfefPfBaSl7HS8zWzzEQAgu060SEOejeswJbUPHo1ii+37JWmuLAAvhneFpe3FdtS8/HE2Pj8h038GiCwFx8ifM8U2lbS6TlgMOQegLBKvnowFVAURY2ov1gt2ZXJkM+XE2TTMKXE5ZW0rR7Juv05hJg5vDO0B13qVfjrhEM7ID+VzQHNmLE5jcFtqlExPKD8MlDGRs/eydszd/DpTS3Yl1XEFc0rExd68eT/VKkR9YoKKhex9ck5RATZuOz9RfSoX4F3rmvGpW/PJ/lwEdtf7lveyTun7Msq5NfVB7ija01CHKqAfyIqqCgqqCg4PSZ2XUPTBNvT8il0e2mREFneyVLOQyqoKOorl0KATS95rRadUhTlTKguxYqiKEqpUUFFURRFKTUqqCiKoiilRgUVRVEUpdSooKIoiqKUGhVUFEVRlFKjgoqiKIpSalRQURRFUUqNCiqKoihKqVFBRVEURSk1KqgoiqIopUYFFUVRFKXUqKCiKIqilBoVVBRFUZRSo4KKoiiKUmpUUFEURVFKjQoqiqIoSqlRQUVRFEUpNSqonEOK3F5+W3sQKWV5J0VRFOU/UWvUnyM+mrmV12fvBmB/diH3X1KnnFOkKIpy+lRJ5RzgMa2SgAKQVeAux9QoiqL8dyqonAMWJ2WWvK4SZuP6NgnlmBpFUZT/TlV/nQM61orh9aubcEn9OGJCHOWdHEVRlP9MBZVzgE3XuLZ11fJOhqIoyhlT1V+KoihKqVFBRVEURSk1KqgoiqIopUYFFUVRFKXUqKCiKIqilBoVVBRFUZRSo4KKoiiKUmpUUFEURVFKjQoqiqIoSqkRZTXNuhDCBRwqk5spilJeYqWUaq6hi1iZBRVFURTlwqeqvxRFUZRSo4KKoiiKUmpUULlICSHmCSF+OsG+u4QQ0v/6GyGEFP/f3r2E6BTGcRz//lwWriml5JYppdxGQpFhYytKzJTLYlDY2MlClCxlaWdlvG4LUQoLNco1NFKuKSOZBVaIDH+L82jexjm8w5kxen+fejq953mec87T+9av55znzEhXCtrOSPW591El3U/1c3LqVvzoW1W6JXVJOi5pcsEx90i6UftozWygOFSsFl+AJkkTc+pagKJAWQTMBp4AO35x/GXAxFSmAeuAhcAFSep1zF3AwT5ev5kNEIeK1aKDbOXe2py6ZqC9oF8rcA84BmyQNKag3ZuI6ErlVUS0A/uAOcBcAEnTJV0CDgCP/3woZtafHCpWi6/AGWB99U5JjcAU4FzvDpJGkgXOReA0MBrY1Idzdqftp7RdArwmm/nc7MNxzGwAOVSsVhVgiaTqf1HZApwFPua0Xw+MBU5GxCOyGcv2351E0lBJ84G9qc9TgIhoi4jNEfHir0ZhZv3KoWK1uga8JHveQXrW0QwcL2jfCjyMiI70uQ2YJWl5Tts7kt5Leg98Bm4DXcDaiPhW4hjMrJ85VOrXF4q//yH03H4CILK3ZE/ScwtsKTACuNy7s6SZqb5StbsCfAN25pxvDdCYSgMwOiJWRsTz2oZiZoOFQ6V+vQPGFdSNB97m7D8BLJTUQHbr61REdOe025K2+9MS4W6gk+z3tjpnFVlnRDxLpTMiPmFm/yWHSv26DSyQNCqnromch+ERcZdseXAz2Uqwtt5tJA0HNgJXgXn0zEAaycJmOLC1hOs3s0HIoVK/jpKtrDonqUnSVEmLJR0he2+k6F2QE8Bu4ENEXM+pXwVMAA5HxIPqks75ENgmaVjpIzKzf86hUqci4h2wGHhBNuN4CpwHJgFNEXGroGuFbFVXpaC+NR3zp2XG6bnMoXSOVX9z/WY2OPmvFJuZWWk8UzEzs9I4VMzMrDQOFTMzK41DxczMSuNQMTOz0jhUzMysNA4VMzMrjUPFzMxK41AxM7PSOFTMzKw03wGJR6VYqpk/iAAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stderr", "output_type": "stream", "text": [ "WARNING: saving figure to file _temp\\('Baron_human', 'Baron_mouse')-(12-16 18.13.20)\\figs\\umap-ctype.pdf\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlgAAAEnCAYAAAB1+j1VAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAxOAAAMTgF/d4wjAACVUUlEQVR4nOydd5xcVfn/35+Z2V6yyab33juhJkivggVQRAXBioriV38iovAF/doFwQKiIiBFpCiI0nsSCIRACum99022t5k5vz/Omd3ZyczubLalnPfrNa+Zuac9995z733u8zznHBlj8Hg8Ho/H4/G0H4GuFsDj8Xg8Ho/nSMMrWB6Px+PxeDztjFewPB6Px+PxeNoZr2B5PB6Px+PxtDNewfJ4PB6Px+NpZ7yC5fF4PB6Px9POeAXL4/F4PB6Pp53xCpan1Ui6WdKOuP9G0tXud0DSlZJ6d52EHo/H4/F0LV7B8rQ3ZwH3ArldLYjH4/F4PF2FV7A87Y26WgCPx+PxeLoar2AdpUjKlXSrpC2SKiW9LekMl9Zf0sOSSiTtk/SipOlp1Hkq8Kz7u965Ev8l6a2EfEWSqiVd5NyJOyRdIWmTpApJz0kanVDmc5KWSqqRtErS/0rKbJ+j4fF4PB5P++IVrKOXR4FPAF8FJgNvAP+VNAV4HeviOxOYCSwG3nRpzfEm8Gn3+zjg18BfgBMSFKZPA+XA0+5/MfAD4HPALCADeFVSAYCkLwO/BX4OjAf+B7gCuP9gdtzj8Xg8no4m1NUCeDofSWOADwMfM8Y87bZdB0SAc4E+wARjTJ0r8h1Js4BvAVelqtcYUydpn/u72xhTIek5YAtwJXCDS7sKeMAYUy8JbD/8vDFmrpPl08Am4FPAn4EbgZ8ZYx5w5ddJigLPSPq+MWZDW46Hx+PxeDztjbdgHZ1Mct/zYhuM5XpgMJAPlDh3XYWkCmA61nrUKowxEeA+4HI3wnAiMAP4a1y2Wqz1K1ZmJ7AWmCKpFzAQuDlBnsdd9nGtlcnj8Xg8no7GW7COTuqaSQsA64FzkqTVHmR792BdgKcB5wFvG2OWxqVHjDEmoUwQa1GLvQR8D/hvkrq3H6RMHo/H4/F0GN6CdXSyzH0fF79R0rtYhWUgUGWMWRP7YN17H0mj7kRFCefCexm42H3uSciSK6nBOiapHzAMeA/Y5T4jE+QZAvwKa23zeDwej+eQwitYRyFOQXkMuEPSOZJGSroV6257CtgJ/FPSTEmjJP0euBz4II3qy933NEnd4rb/BRuH1Rt4JEm5+yUd50YrPgJsBB5zlq2fA1dL+raT9Rys2zHPuRM9Ho/H4zmk8ArW0csXsFMq/A1YBJwAnGuMWQScjFVwngYWYmOmLjTGvJ5GvQuA/2CVpB/Hbf8XUINVmsqTlLsPeBJ4DdgNnGqMqQIwxvwG+LqTeRl2ItOngEvS3FePx+PxeDoVHRj64vG0P27pnC3AabHRgm77lViFKccYU9NF4nk8Ho/H0674IHdPhyJpIHA88EXg/XjlyuPxeDyeIxWvYHk6mh5Y999GvEvP4/F4PEcJ3kXo8Xg8Ho/H0874IHePx+PxeDyedsYrWB6Px+PxeDztTKfFYGVlZZlevXp1VnMej6cL2Lp1a50xJqur5fB4PJ6uptMUrF69erFly5bOas7j8XQBknZ3tQwej8dzKOBdhB6Px+PxeDztjFewPB6Px+PxeNoZr2B5PB6Px+PxtDNewfJ4PB6Px+NpZ7yC5fF4PB6Px9POeAXL4/F4PB6Pp53xCpbH4/F4PB5PO+MVLI/H4/F4PJ52xitYRwD1NTUs+s8TbFn8HomLd+/bvJHda1d1kWQej8fj8RyddNpM7p6OY/Xsl6nYuYOKnTso6N2XSH0d+7dspGLvXuqqKqmvqSYrv5BAMEB+z95U7NlFKCuLrUsW0n/CFHK6FbWp/XXzZhPKzKJbvwHUVlTQfeBgMnJy2mfnPB6Px+M5DPEK1hFAvNVq9RsvU1te1vA/v1cfRp9yJstf/C+hzEzGnnk+i556rCF999pVDDn2JPqNnZB2e3VVlUTDYbYseY+dK5Y1bN/8/nwAcop6MP3iy9qySx6Px+PxHNYo0aXUUQwcOND4tQjbn3BtDe88fC8mGk2ZRwqQU1REQe++7N+6mdqK8gPyjPrQmRT26UsoO5tQZvK1evesW826ebMJhELUlh9YRzwDpkxn6IwTW7cznsMeSVuNMQO7Wg6Px+PparwF6zCnprwcE42S26MnVftKwByoaBkTpWpfiU1Pweo3XgKJHoOGMu6s8w9sp6yUzQsXEA1HiERbVsq3L13CwEnTCWUlV9Y8Ho/H4zmS8UHuhzk5Rd2ZfslnGDL9uPQKSGR36540KSsvn8J+A5ps27lqOeW7d7Jm7mtU7dtLpL6OaF1ti81Ew/WsffO19GTyeDwej+cIw1uwDmOikQhvP3gPmCgmGkXBICaSJKMEMVewMdSU7ktaX21FOTVl+xv+V+zdzZrZrxAIhYiGw4SyswnX1DTW1QJ5PXsTrq31ViyPx+PxHHV4C9ZhzN5N6zGRcEP8lYkk064ApX+aC3r3bfid16Mn3foNpGjAYAKhkFWu0mTErFPZ9O48Vr3xUtplPB6Px+M5UvAK1mFMRnaOtU61RDSF4pWEtW/NZvlLz2KMQRITz/8o+cW9iEajFA0czMiTzzigjAIBsgu7Ndm27s03yO3Rk+Ihw9Nu2+PxeDyeIwXvIjxMqamsYM0br6TtrlubmcdN/Sdx9e41nFy5J3VGiZJNGyjfvZOcbkW8//jDhGtryenWjQnnXEikvp7Kkt2A2LH8AxQMIERtZUWTakw0SuWeXVSV7G3DXno8Ho/Hc3jiFazDkH1bN7PsuX+3qky2iXJm2Q66ReqazRettW7ADW/PJafIBsMbIDM3D4BgRgbd+g5g9RsvYaIRTAvWseryUvZuWEvx0BGtktfj8Xg8nsMZ7yI8DNn03vxWlxlQX81VJRuYXFPWbL783v3IyMklp3sPdq9ZSX1NNZgokfp6otEI0XCYsp3bidTXA5BV1KOxsHNX5nQvJpiRAcC+TRso2bSh1fJ6PB6Px3M44y1YhyEZ2dltriMK1CpITtywQwWDVOzaDsCulcua5K/YvZNVr79Mbdl+Kkv2kterN9X7SqjdHze3lnNXVpfuY9CUGWTk5FA0YBBZzvrl8Xg8Hs/RgrdgHYbUlO5vcx33Fw/j80OOZW8ws2Fbj2Gjmi2zd91qKvbsJhjKoHL3LjDQrf+gAzNGo2x+/x2KBgwip7AbgVCI+upqVr7yPGU7rQJnjGHflk1EIxG2fbCITe+9w7YPFlFTVsb6t+dSvmtHm/fR4/F4PJ6uwluwDkP6jZ/EpvfnE66pJrtb0UEpXKeX7WBm+a4mMVl716yAQACaWXYHIL93H/Zv2UQ0EmbApKl0HzCIDfPfJJCRQbS+nkBmJgEFmliuaspL2bN+DXnFPSns048ti99j07vzUDCEiYQb8q2f/yZEo9RUlDHujPNavV8ej8fj8RwKeAXrMKTf+En0Gz+JcF0tWxa/z9ZFC1pdx5D66gO2ZeUXJF2nMJHSHdsYOHUG3fr2p2jAIEJZ2RQNGMT+rZsBiNbVkdmtiE3vz2fQ1GMIZmRS0LsvMy69gsy8fAAqdu0EaKJc2cJWucvp1gOPx+PxeA5XvIvwMCaUmUVOQbeWMyaQ1a0o6fb+k6eRXdCNQEbzM6+bcJgtC99l99rVAGTm5lKc4F6sKd3P1sXvUbaz0dWXlV+AJOce3NhsG1sXvUvVPj/Fg8fj8XgOT7yCdZjTY/DQZtODGZlk5Rc22VYbcynGTVIazMykrrKSmvJSovUtrzUIEAnXUV9dzYJHH2Dflg0EMw9UzDYuePuAbeH6uobZ56HpRKlFbn8K+w0gu7AoLTk8Ho/H4znU8ArWYU5GTg4jTjo1ZXpB774U9ut/wPZAMETRgMEMPX4mA6ZMZ/oln2HHssUgkZGT25Cv77hJKevOzCsglJVFnzHj6T1iNFM/9skDluWp3LOL0h3bADv56Lp5s9m6MN6l2XSi1HB1NcGMTOqrKgkEg83sucfj8Xg8hy4+BusIoKos+eLNAGW7dmCiERQKYcIu3kkiGgkTDdezb9NGSndsJbd7sZ3bSqJowCB2r1lJ33ET2bF8SUNd2d2KKB4ynHBdLdX799Gtbz8UCDDipFNY9NRjRCNhMAcGyIdrbLxXXU0125cubnZfIvX1DD1hJlm5NlZr6fNPU19by9SPXNLaw+LxeDweT5fhLVhHAL1HjiEjyVxTCgQIZmRgolFM1JBX3NMmuPmqynZso3T7FjCGYDBEMDMLBQKUbN5AQZ9+1FZUNJmGoaZ0PxjDyJmnUlNexoqXnmX1Gy8z/+/3UVddSdhNPtoogBj5oTMaZnEPZWa5GeFTr59Yvb+E7PxuVOzeyY6Vy9m/ZROVu3cy/+/3s/6dN9t0nDwej8fj6Sy8gnUEkF/ci75jJwA0LG8D1iVHNEr/8ZOZcPaHmfqxSxkx67SG9GBmFt36D6J42Ejye/WyS99EIggo37mdfZs3ULW/hIyc3AY35I6VSzHGEHZL6uxavYK6qkrCdXX0HOaWwwkEKOjTjyHHnECvYSOpraxk/9bNBEMhJn7443Qf2HTurGBGBoFQBkOOPYljPnk5kboaNr33DmvnvNKQp66qgj3rVnfA0fN4PB6Pp/3xCtYRwsBJ05h0wUVMv/jTjHRKVEGf/vQbP4nS7VtQwMYz9R41hmCWnQk+UldL33ET6DF4KOHaOnqNHEtGbh7h2sYg98ycXPKKe7Jl8QLye/fBRA1lO7dTlDDBaDQcYduShe5PlNqKCja++xZ7N61n3ZuvsfS5f1Oxdw+Ln36cqrJSBk0/jjFnnk9GTq5dhidcT5/R48guKGTXmlVNAvBjZBUUHrDN4/F4PJ5DER+DdYQQCIUo7NMPgD5jxtNzxGjmP/xX6msqqS0vb7A4BQJBjv3U53j/n3+ntryMvevWsGf9mpT19hwxikhdHRlZ2Yw8+XSi4TArXn2eUjfnVQMJsVd1leUUDxtJ8eBhlLs5r9a/PYfug4ayf8smNr/3DhnZOXatQ0coy45CjNTXNbgxm9ZZyarXXmTkh04nEPAB8B6Px+M5dPEK1hFKMBRiyscuBWwsVnZ+AQDlu3ey/MVnqK+uAmDP+jUoEEDBINHEGCpg4ztvkplXQPGw4cz7258Z+aHTD1SuUpCZk0M0GqX3yNFsX7qIsu1bm6THK1f5vfqyYf5bFA8ZTqoYrdryUnaXl9J9yDB6DRuZlgwej8fj8XQFMkksBR3BwIEDzZYtWzqlLU8jK195nr2b1nPsp64kGg6z4LEHMVG3wLOU1FKUjMz8fOoqKug5YjR71q4iEAzZUYMtEMrKZsanPsf+bVvYu34Nu9esbMvuANipJSZObXM9nvZH0lZjzMCulsPj8Xi6Gm/BOsIpHjaSjJwcQpmZrH57ToNyFcjIIOQmFwUOWBMQICM3j279BlC+awe15WUA7Nu8kUAwSFqKuUS4toa1c1+jtqKcsh3bCGRmEq2ra7lsCnqOGO2VK4/H4/Ec8vgg9yOcnsNGMOyEk9m7cT3BjIyG4PHcou5MOO9j5LqpGxKtURPP/xiS2LN2FeE4hciYKFKAvuNTT0AalxmA6tL9VJbstW7IlMpV6qkb4uk9cmxa+Twej8fj6Uq8BesoYN6Df2lUbBQADBW7d/H+4w815CkvjpC7P0AoIggE6NZvANlF3amrrCASC5DPyGDcmR8mlJXFB88+mVbbPUeMZtSHTicajvDOw39t2J6Rk0s0HAaJ/F69Kdu+rdF1mYK84p4U9unTqn33eDwej6cr8BasI5zqsn1NrUZJZloHKNwbJBQRmXn5jD71bFa8/BxlCcHswVAGgYBY/fpLRGqbWa/QWcnyevUmmJHBtiXvs2fdGkzEKlA9h49i2sc/BdipIkq3bm5RuQIYOet0ghmZLebzeDwej6er8RasI5wP/vtU2nmDWVmMO/M81sx5lcq9ew5Ir6+uYvlLzzTEX+X16kPl7p0H5Cvo3Zf6mmqqSvZSuXsXAEUDhzSk792wjvJd2+k7YRJbFy4gIy+P3iPHsHXReyll69Z/IDlFRWnvi8fj8Xg8XYm3YB3BVO7dQ11VZdr5I7W1rHrtpaTKFUB2QSE53Xow9ozzyO/Vhz6jxnLcZ7/A1I9d2hCTNXDKMUy+4CL6j59MYZ/+9Bo5GoBouHEKCBONUFtRwdaFC1AwyLGfvIJ+YyfSZ/T4lLL1HTOeYCgj7X3xHPlIMgmfUklPSxrWQe3dJ+lx9/tmSe92RDseT2uRlCHpa3H/G/pqK+sZmnBNRd119bKkWe0rdZN2jaQL3O8Nkq7pqLY6E69gHcHkdu9BTo/itPOHcnKpLk29cHRh3/5MvvAiivoPpLaijB0rPiAjK5tgZiahzCwK+vQn6lx9vUeNoapkDyYaJRDKoGzHtqR1mkiEtW/N5t1//I2eI0bTa+QYmyDbNfuOncAJV3yZnsNHpb0fnqOKy4F+wADgQ0AEeEpKshSAx3Pk8mngR3H/rwW+2Ib6TsVeV4OAU4DlwMuSZrahzqMO7yI8glEgwISzPsy7//hbi3mDWdlM+vDHef+Jh1POjbVr9Qr6jZ9Mfs9e9JswmT3r1rBu3lzKd26jYs8uMnLzqNi9g17DR5HbvZi84p7U19a2OF+WJHoOH0nlvj0MPW4mhf0GkJWXR0GvvoQyfcyVp1n2G2N2uN/bJN0ELAImAYu7TiyPp1Np8kJhjCltY317466rrcA1kvoCvwWOaWPdRw3egnWEk5mbR273Hs1nCgQYOfMUBGTl5ZPfqw+BBMVGwZD7tl2m//gpVJXtZduy96nYs4vswm6AXWD6g2f/zYLHHmTIjBMp3bYl6bqC8exYvoQ969awYd4clr/0DGXbt7Lsuacp37n94Hbac1gy9Pr/auj1/5019Pr/Xum+D8YKtbulDJKulrRaUpWkeZKOj0s7T9IiSdWSlki67CBk8HQBfV9dqL6vLpzV99WFV7rvZvuPc0t9WdIySZWSnpE0IC79OOcaq3D9YY6kKS4t5kq7RNIKSTWSXpc0Iq78ZFe+UtImSdcllL1JUomkJ+Pam+vaWinp2nhLrKRvu+11kvZIultSpqRTgXuBYlfv0EQXoaSLJS12fX6xpPMP4hD/HpguaXiK49ld0v1un/ZKuldSvkvLkPQLSTsk7Zf0n1T1HEl4BesIR4EAvZuJbQIIZmSw8pXnWfvm69RWlJPfqzfRujoCcTFPJhJGwRAlG9Yx74E/2wWfT+iBCiMEM7OoKSul3sV7RepqCQSDZGRnM+mCi8jIzkkQSgeMBlQoAwVDVOzawe41K8nKL6Cgd9/2OQieQ56h1/93CLAMeBn4nfte5ranhaRc4AfAQmBJijyfA24DfgpMBt4CnpFUIGki8Dj2LX0i8Evg7oN8GHk6kb6vLkzaf9z25vgJcBNwIpAPPClLAfAcMB9rDZ0FBIHfJJS/CfiSS++D7TNIKgZewVp/jgW+CvxQ0mfiyp4FHAfcIKk38ALwb9fed4HrXTkkfRa4Eev6G+W2XwF8CngT+BZQgnXrNRn+7RSwR4H7sX3+AeCfB6HgfOC+J6RI/yf2ujnf7dsxNB6vHwNnA5dgj/V24BVJOUnqOWLwLsKjgF4jRrFjxQcEAkEK+w9ix9KFDWkKZTD+7AtZ9doL1NdUc/zlX6Jizy72bd5AbXl5k3pMJMym998FE2XnquXU7RfBmjwidQdO2VBTVooxUdbOfc2ucRi3LI8ku6AzAuw2E66HYOMCzpn5BQ2LP3uObJyl6jlgJPaeFNO+RwLPDr3+vxM2/PzDqZYOeExSBNuZcoAo8FGTeqmBrwN/NMbcCyDp/wFhoBj7UHvQGHOPy7tW0jjg28AzbdlHT8fhLFUp+0/fVxdO2HHa1FT94TZjTGzgwpXAWmAGVkn5OXCrMSYCrJd0D1Yhi+cnxpjZrvydwPfc9kuBeuCLxpg6YJmkrwPVcWXvMMascWVvAd42xvzCpa1xLrnrgDuxitpVxpjnXPpGSdcCE4wxdZJKARNz6yWEIH4NeMoYc6v7/yv3MlKY4pikYr/7PqCcpPHYuK0pxpjFbttXgJOdEvUt4DRjzFtxaZuAi4EHWynHYYNXsI4CMnNyOeaSxhen7gMGUbZjG5V7d9FnzHhWvPhfRp92Nuvfmcv8f9xPMBSivqoqeWVuHq3yXTuoq6xoCEZPxoLHHiK/Z28i9XX0nziN7csXI9QQk1XQt591A8aehZHGubBGf+iMNu615zBiJjCMA+9HIWCES5+Touw3gVfd70Ls2/M/JZ1jjHktSf4JxFkh3MPzuwCSJgCTEqwMIdJwO3q6lLb0n9mxH8aYdZL2ARONMfMl/QUbezQJGAdMBxKHZa+O+11Go3I3AVjslKtY/Q+AdRG6TRviyk4ATpdUEbctCGRKyjTGvCpphqQfA2OAKVhL1rwU+xXPBBKUGGPMLWmUSySmWJWlaKOWOMuxU6becpbhLOAlSfGKbg52X45YvIJ1FNJj0GB6DBoMwL4tGwmEQlTs3klVw/QMaYS+GEMglEEgGCSYkUltRZJrzhiCGRkUDRxMv3ETGHb8Scx74C/gFKxew0aS272YncsP9OZEwy0vJO05YhiJfdtPZrKsc+mpHpDbY1YAx3uSTsZaql5Lkr8+ybYYIax76Y8J21ueBdfTlbSl/yTeaAJAxFmPFmDdjs8CfwfGAomKSeLaX7GbZ3P9LEZN3O8Q8ATww2QySroCuBu4x8nzI+CuNNpIV5Z0mOa+F6VqI4XlOKZnnAXsSkjb3y6SHaL4GKyjnO4DhzDj0ivoP2lqQyB7NInLr0mZwUOpq6rEGMPIk0+ntqKM7oOGMGTGiSjQ6OYbecpZjD3jXCacc2FDEPxxn76K8ed+hEAwRH1tDbtXL0/aRlZBa63XnsOYNTS++SeS6dJbg7Bv/8lYSeODAkkBSWslfRg7FH2kMWZN7AN8GPhCK9v3dC5t6T/xfWE00A2rQFyEVRrONsbcZox5GRhCuoum2n42SVKDEUPSzyQ9kCL/cmBsQt+bAXzPGBMFrgF+aYy5xrm3V2CtczF5UrlAY7JMi98gabakq9PclxhfBuYZYzalaCPLuQpjbZwvaS2wHqvI9o7btw1YF+zkVspwWOEVLA8AgUAQ08J0CoGMDMaeeV7DnFYmEmbFS88Qys5m8DHHM3DKdEbOOg0kAqEQ4ZoqQplNXyoDwSBbFy0gGgmz/YNFyS1VChAMeePqUcRcYB0HWhPC2JiYuc2ULZLU130Gu7iUM7AWh2T8BviqpMskjcQGvOe4Nn4NXCDp+5JGyo4g/DkJQcOeQ4629J8bJZ0taSp2JN5rxphF2IDxPsC5blTe1cA3SG4lS8ZDWMvN7yWNkfQRrFX1Pyny/wEYJekOl/887Ki9mFuhBDhN0jhJk7Euv35x8lQA+ZLGSkqckfl24OOSviZphOxoxmnYoPpUFLtrqr+kaZL+BHwM+J9kmY0xy4HngT9LOkbSsdhr53k3ZcSdwB2SzpU0CvgTcDpWsTxi8QqWB2MMtc3M+B50SlJWfgHr35pNpK6pVTxcU8OqV18gGomQ37Mn+cW9iEYibHx3HnXVjbFcO1Z8wLuP3E/fcRMp6j+IvJ69mPyRS+g3fjJDT5xFYd/+9Bk7kfFnf7hjdtRzSOIC2M/FWhrqsA+LOmx8y7nNBLiDHRG13X1WAVcBXzLGPJYsszHmEexorJ9j58maBpxrjNlvjFkAfAK4DFiKHWl4gzHm7jbvpKfDcAHsKftPMwHuAPdhlZs5WEX6Yrf9UeAvWEVmIfAZ4GogzykIzWKMKQPOw8YmLQLuAK43xvwjRf4tbh+Oc/n/jHUJxlyG12Kf1wuwLsJyJ3fMMvUKNv5pITZWLL7ut4DPuTqWYgPwLzDGrGtmF17DXlObgf8CvYBZxpjmYr4ud/lfww4KeQP4jku7DjvK8H4n40isdfCInotHqQfbtC8DBw40W7Zs6ZS2PK1j03tvs3nhgpQTjKZLzxGjqdyzi+rS/fQePY5dq5YzcOoMhhxjpxnasWIpWxe/x8QPf5ysvPz2EN1ziCFpqzFm4MGUdaMJZ2JvvmuAuS0oVx5PA240YZP+05xy5QKuLzTGpLIqeTxtwitYHvZt2cTOlcvIyM5hx4oPWi6QJt36D2LMqWeRkXNET3XiiaMtCpbH05l4BcvT0fhAFw/dBw6m+0A7qjAzL4/ty5fQd+xENr/3TusqipvrCqB022b2rF9DP7cQtMfj8Xg8Rws+BsvThEFTZ3DcZVexd8NalCzQPDaBnURGTm58woEztgPr3nqjYwT1eDyeNmCMkbdeeToSr2B5kpJb1IOc/CRTJcQsVMZQHxfAPmjaDAp690laV31NddLtHo/H4/EcqXgFy5OUMaedDYH0pnwp6NOPniNGU12afAH32oqKpNs9Ho/H4zlS8QqWJyXd+qUXq1y+czv7Nm1g3Fnn0XtM04WlM/MLyO3RoyPE86RDTWnD8kZJiUagYgdE2muyZ4/H4/GAD3L3NMOgKcewfWmyVRGakpGbz65Vy+kxeCgDJk5l18plDWnTL7qMQCDVpNodQzQSIRDs3DYPCeoq4a3fQFYB9JsOBQPgvT/DiLNh2GlQWwbhWlj/KpRtgX7TYONsCFfbvMdfA1V7YM9KGHgCdPJ583g8niMJr2B5UhLKyqLP2AlUluwlUldH9f6SpPnqqyoI1waJ1NeT37MXky64mJJNG4jU1xLMSJxUuOMwxrDtg0VseGcu4876MD0GD+20truc8h3w9h32d30lrH4OQm6S5+wiSivreWNJGZNrXmVI2CnAa19oWn7p41YJK1kN3QZBt8Gduw8ej8dzBOEVLE9KFAgwcuapAFSW7GHhv5JOQkzxsBEMO35Ww+ShhX36Utinb2eJSTQS4YNnniSYkcH+rXZVk00L3yW7sBu5Rd2p2LubmvIyegwcQsCNjNy88F12rV5JXVUlRf0HMuyEWWQfrusfvvUbqExcQzVqLVMABoKla8kNZJJpag4obonA9gX2Z9FQyO7eQcJ6PB7P0YGfaNSTNtFwmE0L32X/5o1Ul5cSra+naOBgJpxzYYe1uWf9GvasW8OoD51B+e6d7Nu8gSEzTmxwAZbv2snSF/5LpPbAkYoKBBh3zoUse/YpALoPHkZBz16U7txO6damy8vl9+pDTdl+xp/zEQp69e6w/Wl36qvh9R81nye7O9Tsg2AORBqPU1VQvN89h8n7aygIuzgthcCEofsIOOaLrRanMycalRTELsFxFXYh3v3Y9dB+mGJB2sTyVwK/Nsb07EAxDykknQq8ChQAPbEL8U4yxrTfDMOeTsetP/glY8yd7v99QL4x5pJW1jMU2yfiqcEuK3W7MebvcfV/Li5PFLtu4r+BG40xO1q/F83KdR9ufyTdjF3qZ0Z7ttER+CB3T9oEQiGGzjiBqR+/lFEnn05mXj7Djp/ZoW2W7dxOyeYNhGtr2L12FduWLqZk0wbCtbVEwvUsefbJpMqVFTjAsmf/3fB336b1bHrvnQOUK4CK3TsJ19bywTP/YuO7zS23dYixr7nlxBw1++y3U64M9qVqW04GHxRlszk3zo1r3Hq5gUyINr/49yHAT4AvYhegHYNdjHYg8Iak3GbKeTxHGp8G4t+0rsVeGwfLqdjFpPsB44AngYclzYrL85+4PIOAC4ETses3evAuQs9B0nPYSHoOG9nh7Qw7biaDpx1LKCub4SecTPHgYSx/6Rl6jx7Hvk0bMOHUSkBzaSkJBMg6nFyFrXTlGQxCGAwjKuoo2FxKr9rIgRn3LofFD8PUK9pJ0A7hS8C3jDH/df83SLoY2AmcDzzeZZJ5PJ1Lkzl1jDHJ58xJn70JVqifSboCuAS7MDZAbUKebZJ+DDwiqcgYs7+NMhz2eAuW55BGgQChrGwAghkZFA0azMCpx1C6faudwFSpu3Beca9Wtxetq6O6rPTQnxzVGDsasGR1WtnrazNZv/AYwvXWWiWEgH2ZQVYVZCYvFKlrJ2HT5OZu4uZus7i525Xuu6WJ2KLAqZIaXhSNMfuAiVhXIQCSrpa0WlKVpHmSjo+vRNJ3Je2QVCHpfkk5kqZKMpL6ujwhSeWSbosr93+S/u1+HyfpZVdHtaQ5kqa4tKGurkskrZBUI+l1SSPSSU+GpMmuvUpJmyRdF5fWV9KjTt6tku6UdMSvrv6veTv1r3k7Z/1r3s4r3Xez/ccd8y9LWuaO4zOSBsSlH/Q5dXmSnqO4sjdJKpH0ZFx7c11bKyVdK0lx9X3bba+TtEfS3ZIyndv3XqDY1TtU0n2SHo8re7Gkxe4aWCzp/IM4xBGgNo08Bkg670tz16Kk8yQtcvu/RNJlByHjIYVXsDyHFZG6OipLSqgtL7Mb4ud4SphWoHLv7oNqY9vi91j56osHK2LnEK6BdS/BmudTZBBk5ENOT8jtzcYlU3n3vx9ny7LJTXIt6JHDez1SLMZdvq19ZW6Om7sNAZYBLwO/c9/L3PZU3AZ8Htgs6a+SLpfUyxizyhhTDiDpcy7fT4HJwFvAM5IKXB3FwCzgdOBi4BPA1caYhcB24DSX71ggDzglrv2z4+p6DpgPTHL1BYHfJMh7E9bqNgvoA/yylem4fSoGXgG2Orm+CvxQ0mdcln9iH3THAxcBU4G/JqvrSOFf83Ym7T9ue3P8BHvcTwTygSdladM5TeMcAZwFHAfcIKk38AI2hmkS8F3gelcOSZ8FbsS6/ka57VcAnwLeBL4FlGDddU1iIJwC9ihwP/YaeAD4p6ThLRybWPkcSd8EJgBPp8gjSWOAG4CXjTGVSfKkvBYlTcRanH+LfUH6JXD3QSqChwzeReg5rNi+7AP2bWoag5mZV0BdZbmdNBMOWHT6YKjct7dN5TucjBwY8xFY8WSKDMZO01C9B4LZDJm0CMkwaNySJrku3FpOytf8zELYtx66D2tHwZNgLVXPASOx96SYSW0k8Cw3d5vAzaUHnFBjzM8krcE+bC7HBrvXS/ot8F1jR/B8HfijMeZeAEn/DwhjFSuwb9ufN8bsBZZJegGY5tKexypYf3ff/wHOl1QIZADHYF0mecDPgVuNMRFgvaR7sA/veH5ijJnt5LgT+F4r02NcirUQfNEYU+fk/jpQLek07AP6VJcWC+ZfKalTBh90Ns5SlbL//GvezgkfP6FPqhvCbcaYx6HhOK0FZmCVlLac05TnKK7sHcaYNa7sLcDbxphfuLQ1stbT64A7sYraVcaY51z6RknXAhOMMXWSSgETc9nFGb4AvgY8ZYy51f3/lWyMYnOxEO9Iir295gF7gf8xxsyJy/MxSbFlOjKwx/4NUsd+NXctfhd40Bhzj8u7VtI44NvAM83IeUjjFSzPYUW3/gPYsTKP+qrGF6S6yvKmmZxypUCAUE4u9ZWtX6onHLfO4iHL9vdTp4VyoMYelz3Betb2z+SY7PmEEh4zheFoksKO+gp4/69w+o/bQdhmmQkM48D7UQgY4dLnJBYCMMY8BjzmLA6nYS1a3wE2Yd+GJxBndXAPy+9Cw0Oo1ClXMfZjHyhgH9r/536fBtwDTHHydAOWx0YrSvoLcI2kSdig4OlA4lt8vD+3jEZFIN30GBOAxTEFyu3XA06Oa5z8JQkPWbADAZIE3B32HHT/AWbHfhhj1knaB0w0xsxv4zlt7hwNdZs2xJWdAJwep7CAtZhlSso0xrwqaYZsjNMYbD8cBaQzImcCCYHnxphbWihzMXbfDFAF7DAHTjnwIvAN9zsM7E5muUqQI9W1OAGYlGDhCwEH54Y4RPAuQs9hRbe+/Snsnd4cWwoEGpWrQOu6ekGabXQppSlmIlDQzoHl7u2rCzJZ2D2HfZmtnJl9wHEw8VNtFDItRpIiZgOoc+lNcPEtd8T+G2PKjTH/NsZ8DPgv1n1HM/XGSKZwxDSTF4BhLq7mJOzb+RvAycA5uDdrZ2lYAlyAdVPdBPy/FPuSrJ1002M0t08hYCPWLRj/SfdhfDjS6v4TR+JImAAQaYdzms7aU/GT0oWAJ2h6ziZhlamwbID5bKA78CxWAZqbRhvpypLIZmPMGmPMWmPM9iTKFUCly7PGGLOhBeWqJTlCWNfu1LjPROBDrRf90MErWJ7DivJdO6gpK20IfG+Ce2NXMEhWQSHR+FGE0WYsNSkwB1GmU8lMEbeccC+cUVLNx1KMFowCbxXnsCF+qoYYG161cV67OnyKpDWkttZkuvREgsA3JZ2SJK2UxjfflTS6/JAUkLRW0odbEsoFzL+DfcveZozZRqOCdRaNrouLsA+Ps40xtxljXsbOy5XeaumtZyX2bb/BYiPpZ5IeAJYD/YHy2MMP+/C6leZdQoczB9N/YsT3jdFYy+Qi2n5OmztHyVgOjI1TWNZgXZXfM8ZEgWuAXxpjrnEuthVY61xMnuZiIppcA06W2ZKuTnNf2ovmrsXlwMiE/f8w8IVOlrFd8QqW57BiwztvUlmyh3BtkhnJnWIx9LiTGoPgD4KC3n2J1HfyCLqDoXh04++gWxYnkIFVmxrJMNAn2VQMQG1AfFCUzZpUIwkrdkL59nYQtlnmAus40JoQxsbEHPCmbox5H/gX8KikL0gaIWmapBuAjwIx69ZvgK9KukzSSGyQbU6yOlPwLDa26w33/3Wsy6kgro4SbIDzuW4E19VY10lWmm20loewStPvJY2R9BFsfMt/sG6bpcDfJU2XNB34G9DLGNPhJ7KLaHX/ieNGSWdLmoodifeaMWYRbT+nzZ2jZPwBGCXpDpf/POD32Mk7cfKcJmmcpMlYl1+/OHkqgHxJY2UnHY3nduDjkr7mrpPrsIrOC3QuzV2LvwYukPR9SSNlRxD+nISA/cMNr2B5Di8OjCs5gLqDiLmK1ZvfqzeTL7yYaRddhlrpVux0xn2chks44kZPR+sB2RnZHQZYUZBJWejA/cmJGi7dWMr0kmreLs6hNpBwfPvPgOFndoj4DdgA9nOxloY67MOiDhsDcm6yAHfHZdgH07ex7pw3sKP8znCjADHGPIIdffVz7GzU04BzWzFHz7NYK8gbrr5VwA7gRWNMzOXxKPAX7ENvIfAZ4GogT9KoNNtJG2NMGXAeNqZlEVaZvN4Y8w9n7fgoNpbsdeAlrJLx8faW41DBBbCn7D/NBLgD3IftQ3OwD/OL3fY2ndPmzlGK/FvcPhzn8v8ZuBv4octyLfZiX4Dtk+VO7phF6BXsNbAQGysWX/db2FnXr8Uq35diZ0JPY5bi9qO5a9EYswA7gvcyJ+NPgRuMMXd3poztjV8qx3NY8faD9yS3XsWQ6Dl0BHvWN+cVOJBRp51F9/6DCWVlJY7AObSJrUMYCFlNKjYTe49RULIGMOzJDPLE4G6MK63hQ7uTB+8vLMrm7Z65nLOtnKFVcaESgQw4vYWleOJQW5bKsaMJZ2JjZtYAc5tRrjyeJrjRhE36T3PKlSQDXGiMSWVV8njahFewPIcVHzz7FKXbWt+PQtk55BUXU7rVlh0+8xTqq6rIyi+keMgwQlkd5c3pYKr2wLqXYcfCxm3jLrHTN5gwEMAQZU1+Jv1qwuSnGDUYAXbmhOhXHXZBHQHIKYLcXjDtyrTFaZOC5fF0Il7B8nQ0fpoGz2FFSy8EgYwMovUHDlbJLuxGUf9B5PXozbYl7xFQkMHTj+soMTuP3J4w/hIYdoazWAHlWxotWUQRMKoiRUyZAmCiBIH+1fEhLFEYdBIM7ti1Jj0ej+dIxStYnsOKYcfPZOvihezdsBbjJhYdcuyJlO/aScnGdXTrN5B9mzccMJKutqKcjfPfIr9nbyac+xG69RuQpPbDlEAQ8nraD7jZ3QMkBrsnJTYTvkJWKVMApn/BLpPTPeVKLR7PYY8x5jCKBfAcjngFy3NYkV/cizGnnYWJnmGnUZDYvmwJVW7m9UhdLaHMrAPjtJwiUbFnF+vfeZOpH/tkZ4veeWyaQ1rKVYzMfBhxDix/AvpOhe5praDh8Xg8nmbwCpbnsESBQMMov20fLKTOzeyuYJBw3YHrkdZXN65QUVWyh5KN6ygeegRaaGr2t75MXQWUb4XpX4Rug9tdJI/H4zkaOcTHoXs8LTP+nAsbfpdu3UwwM9Wcg45AgII+/TpYqq4itg5jK7wf/aZDrwnQYwQEk0w46vF4PJ5W4xUsz2FPXo9iBh9zPJl5dmbzQLAFw2w0SkaymeCPBLK7wYnfhmGnpZe/71SY8Akobm41EY/H4/G0Fu8i9BwRDJo6gwETp7Jz9Qp2rV7RZDHoeDJycukzZtyhP4loW8jtASPOgr2roSxuIuSiEVCxDfpMgv2boM9EGH5G18np8Xg8RzB+HizPEUf5rh0sfe7pA5a7KR42grGnn9tFUnUBxti1BNe/Yv+PudBOvdCB+HmwPB6Px3IEv8Z7jlYKevflhCu+xNDjTgKJYFYOgVAGxUOOwKD25pCsJeuEa6H/sdBncldL5PF4PEcN3oLl8Xjajc6yYEm6D7u+WipuMcbc3M7t5RtjLpF0M3YttxntVb/H0xbcAs9fMsbc6f7fh+uvnSjDqcCrQIEx5iAWhO084q9hSVcCvzbG9GzvdnwMlsfjORy5Frje/T4JeAIYAcQWWzykb/AeTzvzaeBHwJ3u/7W0aihxu/Am0A9IHgB7FOIVLI/Hc0gw9t6vHrBY74qr7kpqYjfGlAKlAJJK3OZdh/qbs6cDeen7By4WfubPjpbFwpsoU+766FSMMXXAjs5u91DGx2B5PJ4uZ+y9Xx0CLANeBn7nvpe57e2GpKslrZZUJWmepOPj0s6TtEhStaQlki5rz7Y9HchL30/af9z2pEgykr4saZmkSknPSBoQl36cpJclVbg+MUfSFJc21JW/RNIKSTWSXpc0Iq78ZFe+UtImSdcllL1JUomkJ+Pam+vaWinpWkmKq+/bbnudpD2S7paU6Vxz9wLFrt6hku6T9Hhc2YslLXb9frGk85s5Lp91eWol7Zf0qKSiluqSdKprPz/u+F4paYE7Pu9JOjbN43uq28dbJZVK+m0KWVPuV0vHszPwCpbH4+lSnOXqOazlIRPId98jgWddepuR9DngNuCnwGTgLeAZSQWSJgKPA78FJgK/BO5u7kHkOUSwlquU/celp+InwE3Aia7ck7IUuDrnA5OAWUAQ+E1C+ZuAL7n0Pth+g6Ri4BVgK3As8FXgh5I+E1f2LOA44AZJvYEXgH+79r6LdYF/1dX3WeBGrOtvlNt+BfAprGvuW0AJ1kUXNzdLQ2zUo8D92H7/APBPSQesiSVpFnAP9hoZDVwKnAp8s7V1OX4E/NDtZwXwR1dPOse3GBgMTMdel4myppSlpePZWXgXocfj6WpmAsM48H4UwsZVzQTmtEM7Xwf+aIy5F0DS/wPC2Bv5d4EHjTH3uLxrJY0Dvg080w5tezqOtvSf24wxjwPIBjuvBWZglZSfA7caYyLAekn3YBWyeH5ijJntyt8JfM9tvxSoB77oXGfLJH0dqI4re4cxZo0rewvwtjHmFy5tjaS+wHXYuKqtwFXGmOdc+kZJ1wITjDF1kkoBY4zZ4eqLl/FrwFPGmFvd/19JygUKkxyPamyw/CNx7bwATDiIugD+YIx51sn0a+Ap2YD8PNI7vr8wxqxNUXdzsnyO5o9np+AVrE5k1don2bnnPerrq4kSZdKYyynqNpyszFR90+M5KhiJfRhlJUmrc+ntoWBNIO4N2d3YvwsgaQIwKcHCEAJ2t0O7no6lLf1nduyHMWadpH3ARGPMfEl/Aa6RNAkYh7WkJAZwr477XYa1nIHta4udchWr/wGwLkK3aUNc2QnA6ZLiYwiDQKakTGPMq5JmSPoxMAaYgrVkzUuxX/FMAB6M32CMuSVZRmPMAueyuxEYi7X+TAD+1VJdzqKUSOLxAcg0xuxI8/huOJj9kvRDmjmezdTZrngFq4MpLVvPmwt+RmH+IErL1zdJW7DkdwQCIc6YeRsZGXldJKHH0+WsofHBlEimS28P6ptJC2Fjd/6YsD3STm17Oo629J9wwv8AEHHWjgXYuK5ngb9jFY5ExaQu4X/MdNRcX4tRE/c7hB0J+8NkMkq6Argb6757Fut6uyuNNtKVBQBJp7v6HwbewL6Q/A+NymvadTkSj49rJu3jW0NqWrqeUx7PZsq1K17Baiei0TBSgNq6UrKzugOwdW8pazfMx5hwE+XKqAeYCkQd0Wg97yy8DRDhSB3TJn6JwvxBXbQXHk+XMBdYh7U0xN+TwliXzdx2amclMA17M0dSAPuG/U1gOTAy5rJx6dcCvUh+k/YcOrSl/0zDWYEkjQa6AYuAi7AP8LONmyxS0jmkP/XBSuCTkkLGmLAr/zNgIDaWKpHlwHkJ/e9TwBnGmC9Jugb4pTHmf11azP35jsve3GjJWL9vQNJs4CFjTOILxdXAI8aYq+LyjqIxritlXcCKZmRIpK3HtyVZWjqerWjm4PFB7u3AqnVP8txrX+blOd/hlbnf4ZW53+XlOd/hnZXb2Vs3vUleA0TVj/qsy6nP/CwGUVq+ntLydVRWbWHOO//L7r1LumZHPJ4uwE3FcC7W0lCHDYatwyo/56aaquEg+A3wVUmXSRqJDXjPwT6Afw1cIOn7kkbKjiD8OQkBw55DEDsVQ8r+08JUDTdKOlvSVOxIvNeMMYuwAeN9gHNlR+VdDXyD5G7IZDyEVfZ+L2mMpI9gYwD/kyL/H4BRku5w+c8Dfg/sceklwGmSxkmajHWN9YuTpwLIlzTWxTjFczvwcUlfkzRCdjTjNGwQeCIlwHGSpjk57sAG6WcdRF3N0dbj25IsLR3PTsErWG0kEqll5+73AKirt1OP1NSWUFu3n4y6h8iouRdDFpFA4+TWwehSFFlJNNAT6xZuyvLVjxywzeM5kllx1V0bgfHAGdgb7RnAhBVX3bWpvdpwgbs3YhWnxdib8bnGmP3GmAXAJ4DLgKXYUVQ3GGPubq/2PR3ImT9L2n8482ct9Z/7sA/jOVhl+mK3/VHgL1hFZiHwGax1J89ZdJrFGFMGnIeNE1oE3AFcb4z5R4r8W7BK4nEu/5+xLsGY9fRa7PN6AdalVu7kjllwXgGWOFmbvNUbY97CBn1fi+3bl2JnMV+XRJT/BdZjY9PeAPoDNwNTJKmVdTVHm45vS/uVxvHsFPxSOW1k/eYXWb76783mMWQSzjiHUP3zKM4lbUhuD83J6cVpJ/4iSYrHc2gjv9iz5zBBkgEuNMaksip5PG3CW7DaSH19VYt5whkfJRqcjCH/gDRDozV3J4V8n8vZ2FxYn8fj8Xg8nkMeH+TeBowxlJVvbDFfqP4JqAcRTUjJID42MYswBuid35dwuIZQKLtd5fV4PB6Px9M5eAtWG6io3MquvQsP2G7IJBKY0vBfRJMoV2AHUYRdmSC5WVdxS3YPTPkStmxvj2l/PB6Px5MMY4y8e9DTkaSlYEkaL+lnsmsfXZAkvVDSw+0v3qFNQf5AJo35HIFABvHRVOHQOaDMJu6/5Ij6zCsxFGECwzDBgUAmApatfpjtu+Z3oPQej8fj8Xg6ihYVLLc20QLgEuB07FT3jyXMhpqDjeA/6hg04BRysoqJd/WFws8TjMxHLczJJgyB6Fai6omiawjV3k9mTeOSS3V1Fc2U9ng8Ho/Hc6iSjgXrp8CfjTGjjDGjsMOYz8EuiuljuICC/AHkZvcmZsVS0slrGzF0oz7rcxjyCIVfJGjWICAYWYGobci3dNUDrFz7RAdK7vF4PB6PpyNIR8Gagl1CAgBjzKPABdgVtv/aMWIdHlRV72bz1jns2L2Aqprd5OT0Jh2dU8EsooHRGBUSVS/qMz5KOPQhIsFJDXmCgSwgQG1tKRFjeL2knPpo50yp4fF4PB6Pp22ko2CVAz3iNxhj3gCuAj4j6acdIdjhwOLlf2XJypiOaaiu3olbFaGBcHDigQUju8isvomA2Q6mnmjwWCIZZxIJndiYJVpLRiiXSeOu5F8793HporX8ffveDtwbT3uwa89iKqt2NvzfV7qG+nDLU3l4PB6P58giHRffS8BvJV1pjFke22iM+Yek4cD/YWd7PeroUTSakv0rU6ZHKSaScSkBU0Ug2nSiW7k1ZAPsJ7PmZlAhmEb3YN+ex9C711SkAKf2KOTaIX04p2e3DtkPT9uprSvj5TnfIbY2cE5WT/r1OZZ1m55l8IBTmTjmiq4V0OPxeDydSjoWrO9h13P5QNL58QnGmJ9hp9a/vANkS8re8jp27a9tOWMnUJAXm7BaKMmIwQB7yaz5DYo2v4qACIPZB3FTOQwacCr9+xwPQM/MEN8f3o8+WS2NSmw97y66g2de+QKLlt2DMcmmkvCkw45d7xJTrgCqa/c45ep0BvU/pesE86SNpJslvduK/Ke4NeyQdKokI+nA2YRb2XZr6mpru83UO9TVO9H9N8lGkHsODSRlSPpa3P/7JD3eTnW3Z10N10waeVt1PbZChisl7XG/O+T6idGiBcsYs1PS8cAJwKok6f8n6UXg0x0gXxPKq8O8sXQfAAOLsxjeN5eC7CA14Sg79tUxsm8ugUDnrJINkJfb1/0ymBQjBkVJWnWFMy4kGjqWzJpfIVPGu4t/A8CHTvgpeTm920PcJtTU7GPe+7+kqtq6s7bumMuuPYvJzSnm2KnfJjOjQ/rbEYtVsBIJEI5U061gSKfL4+kUXgMuxK6l1p68iV3It7Kd6/UcuXwa+BFwp/t/LclXYutqXqNjrplDkrRGARpjIpLKgCJgd5L0t4G321e0JvVTWhUmft3ELXtr2bLXWrKEnSQhOyPA4F45HSVGE6qqdzP33R+3oQYr9Ur68yJTuTy6nX65FRw//ae89ua3GmK5duxaQN9e08nL7dMucteHq1m9/kk2bH6J+KklMBDcVUhlzl4WLPkDI4d8mF7FSeLHOoGycIT8YICADsX7Q1M2bnmVvfuWEQrlJUmNUltbRmXVLvJy219J9hyZGGPqgB1dLYfnsKLJzdIYU9pVgngaSWcerAGSFmI1zhWS5ksa2sFyNRCJGl5ctJdXl5SwYkvyeaFiasLSTZ03b1QolEMwmNlyxiRIQcAgZbCGAbyvEYyd+lmmD89h3oKbycosbMi7cu1jvP3+L6mo3N4mebduf5N1G5/jpTeuZcPmF4kdtXDoZMIZ56NIBpmlfcgoL6Zk/0Z27V3UpvYOlsVlVUyc8wE/WWf39zsrNvHRBau4efUW1lUdGq7hGKXlG1m57nF27F7Azj0LKMwffkCevfuWsmz1UTcH70GxfOw4LR87btbyseOudN/NatiS+kp6VFK5pK2S7oyZ+uNcXJdIWiGpRtLrkkbElT9e0juSqp0VvmdC/aMk/VvSfkm7Jd0hKdulbXDZnpZ0c1yxKyRtkFQl6WlJPePqO07SXNfeSknXSge+RSS6LVy5lyVVuLJzJE1JLJfiGA2W9KQ7Rjsk/Vr2BoSkfEl/llTi9u9hSYftm8DdG36luzf8atbdG351pftuqf8YSV+WtExSpaRnJA2IS0953NPsX5Nd+UpJmyRdl1D2Jnfsn4xrL2X/kPRtt71O0h7Zib8zJZ0K3AsUu3qHJrr1JF0sabHrl4uVEO6TcFzOl7TUyfEIdp7LWFqDey1uW2Jbp0qa59paLelzbvsGl6XhmpH0WSdPrbvOHpVU1Nx5a6kdlzZa0nMubb2kH0tq/xibFkgnBuuXQC7wWewcWFnAHztSqBgl5bU88+4uKmtsbMvO/c1P3FkfjlJTF2k2T3uRmZHPCdOuo1/v49Ms0XiojYm4b/h4aBXPjKgib+9LLFn5Nyrqh1NdW4shQDBg+3VN7T7mzP8Rb87/6UHHSa1c9y9WrH0M684Eg13nMBocTyQwEROqp2LAMsr7jaQu5wdkZo46qHZay3O7SznznRXMemsZQ19dyNkLVlFnDEQW8bPVf+bRHbt5u6yKP27ZwzeXbSBqDMYYoqbrp6zYvH0O4XB1w/8xIy9Kmm9w/1M7SaLDl+Vjxw0BlgEvY6eFeRlY5ran4p/YwLfjgYuAqRw4dcxNwJeAWUAf7P0Mp/g8B8x35Z4EvhIrJKk7MAeocWUvAz4C3O6yHOu+Lwd+HdfeZ4CPA2cCxwA3uvp6Ay8A/wYmAd8Frge+2sz+IakgTs5JTpYg8JvmyrmymcCL2AfkLOATwKdcuwB/AYY7Wc8A8oF/J1P6DnXu3vCrpP3HbW+On2D7yInY/X9SlnSPe6r+VQy8AmzF9pWvAj+U9Jm4smcBxwE3tNQ/JH0W25euBUa57Vdgz+ebwLeAEqxreXO8gE4BexS4H5gMPAD8U3aQGgl5xwFPAX/HXhergE82dwATyo/GHrfXXfkfA3+WnbC8yTXjtt2DnWtzNHay8lOBb7alHdmXoOeB5S7t89i+/5N096O9SMdFeDrwCWPMHABJq4G3JWU6U3aHsHnHCt5dXwj2ZSstIgbKq+rJzky/TFsoLBjMtIlfYar5MguX/okdu95FChE19UCUjFABvXtOYeuOOUhw0jE3sWP3e6zdaJe/yghlUhcuZfuaexrqNKExGBUgU0ck2vjwjkZr2V++hmWr/8GE0Ze1WtaY1cwQIZJxNpHQyWTW3E5G7V+IBddHM2sQWwlEVrFq3WMMHzT1oK106RAxhj9u3sUHlTUHpK2qKmdCXg2Kc2O+W17Nxe+vYXllDVFjGJaTxX2Th9Evq+NkTEZp2QZ27HmPTVtebrK9R7eRFHcfz959yxq2BYM5dO82IrEKTxzOUvUcMBJ7T4qd0JHAs8vHjpswbsXyJhq1pNOwD6JTY/chSVcCKyUNjMv6E2PMbJd+J3bQDtibeRVwrbH++JXuQTTMpX8G63b5nDGmGjvI52vAfyT90Biz2+kh+40xFXE6yTeMMe+79h4FprvtXwfeNsb8wv1fI6kvcB2NcTPJyAN+Dtxq7JvZekn3kN7D4kxgKDDLGLPbyfQVoJ97uF4KDDDGbHNpn8Y+pGcCW9Ko/5DAWapS9p+7N/xqwleGfjfVG9ltxpjHoaH/rAVmYJWUdI57c/2rHvii65/LJH0dqI4re4cxZo0rewvN94+twFXGmOdc+kZJ1wITjDF1kkoBY4zZ4eqLl/FrwFPGmFvd/19JygUKOZDPA+8bY/7P/b9J0rkpjl0yvggsM8bEjsMqZ5HKSHLNVANfMsY8ErdPLwAT2tIO9mWozhjzP3Fp38S+PNzQin1pM+koWD2xnS7GIuyNpzcddBGWV1bw7uqlkDGrYVsszqolKmqi9OoIoZpBEt27jWDPvvVQ8D/0ya9k+6b/Y8jAU+jT6xiyMgsY0HcmBfn96VY4lIH9ZhIKZrNq3b/YtXcxAIFABtU1uwmFn8WQOjpx2455rVaw1m96geqaXY3yRjcTiKwiov4ETUWT2eODkeUEI3Y2judfv5ri7hM5ftq3W9VeOpTUhzlp3nKO75Ysdgle3DeaF/eNdv8aj8hbpY1xv4sqqvnFuu3c3qyRo/1Zt/l5tu98m5FDP8qaDU81bN9TspRjJn2Tee//jLraMkKhHGZM/TaZmQWdKt9hyEysYpN4PwoBI1x64urnE7DKR0kSg8sYGu9Zq+O2l9H48B0PfGCaTlz3Do0K1nhgkVOuYszFmqLHJpEnRvy9cj+N7pUJwOmS4uMYgkCmmi471gRjzA5JfwGukTQJGIdV2tIJgJ8AbIgpV66+/wKocUTgqoTjF8Iev8NGweLg+k+M2bEfxph1kvYBE40x89M87qn61wRgcbwRwhjzAFgXodu0Ia5ss/3DGPOqpBmSfow9P1Owlqx5KfYrngnAg/EbjDG3pMg7Hng/Ydt8rHUuHSa4/PFt/TZZRmPMAln3643Ya2qSK/+vtrQj6dfAiIRjKaz3rVMfFukoWEHixp8bY6KSamjsSO1KbX2Ul5dUNlGuAAIBiLTgHevfPZPBvTsnyD2RoYPOpF/f03ntgxKys3syatjH6V40mpzsYsaO/ERDvrr6Cj5Y+Te6dxvFrr2LqK0rJUofxK4Gpao5+/zIoSld5ymprG46LiGmRNVnXERYPQhFXk/Z5t59H7S6vXTIDgSYVJDDttpmjKDGgERzR+T1kvL2F64Fxo/8FIP7f4ji7uNYu+FpDFG6F02hpLovhQW1lFdswZgIpx7zPXKze7RcoWck9m0/K0lanUtPfECGgI1YN0si26HhPSuxgynFb5wMMWo58J0uZhpvLrQiMUYh1kYIeAL4YZIy4STbbGFrxViAdX89i3XdjAVSPSDjaS6mIuTSp3Hgfu4GuqdR/6HCwfSfGInHPgBEWnHcU/Wv5uNZLPGm+2b7h6QrgLuxLrVnsSMG70qjjXRliae56yIZ8XpE2m1JOh27Lw8Db2Ddr/9D8vOYSEt9+y3sZOiJbE6yrcNIJwarU8kIisG9synMbermi6YRerRtXx3BTpymIZGsjABTBmykX+FeNmx+nvnv/4oFi63yHonUsnHrq1RXl7B330rWbXqO2jo70COSeTr1mZcTbRpjewCD+5/GsMHntFquESmUslD9s4Qis5tV6ELB3Fa3lw65wQD/mDKCJRUHugcbcG/WQaAgAIGEuKsA8IWBnW2vhKysbhR3HwfA6BEXM3rExfQd8CVWbAuwsyzE6Sf9mpnH3kJuB0yvcYSyhtQvbJkuPZHl2AmOy40xa5yrJQTcSnLXRyKLgSmS4m/m0+N+LwemuniOGCdhlZEDpqtJg+XA2JisTt4ZwPdM84GVF2EfJmcbY24zxryMfQtP50a3EhgiqUHLl/RVSW84eTKAvDh5SrAPucEHsX9dycH0nxjTYj9cXE83rJemLccd7LGfpLi10yT9TNIDKfK31D+uAX5pjLnGGHMvsAJrnYvJ05yDZ2X8fjpZZku6Oknexdi4sHjir4s6IE9SvO4QH8uVrK2HlHzFl6uBR4wxVxlj7jbGvIu1yqXbt1O1s9zVsyXuWA4EfkYn6zzpNjbCReWPdp0QYFj8trjtbRMoIKYP78bA4sb7WrruweL8rl17Ohyp5b0P7mTpqocIBDIpLBjCwH4f4oOVDzLnnVtYuvIBtu58k+GDzyU32ypThnyiocmgbALsabb+3Nx+GBNly/Y51NamPwp3247kVmRRj2hec83P75d2O60lIHFiQcsWxwgwa992HtrwFoPrGi30WRJfHdT5ClY8I4acx8ghH2ZQz2ymDS9kYHE2WVnd6FYwqEvlOsyYC6zjQGtCGOtym5ukzIvAUuDvkqZLmg78DehljElnyO0j2ODDP0kaK+mLNA3mfci1f5+kCZLOAH4P/CMW5wJUAOMlpbPEwh+AUbIjEcdIOs/V1/xFb5WePsC5sqPDrga+QXpv+S9gj99f3T6cCvwA+I8xZiU2oPp+STMljccGP0+gqdvrcOBg+k+MGyWdLTv55b3Aa8aYRbTtuIPtPyHg9+58fwQbh/efFPlb6h8lwGmSxkmajHX59YuTpwLId305cbTc7cDHJX1N0gjZ0YzTsP0jkT8BoyX93D3Xv491scZ427V5naRhkr5HU0XnLmCy7CSho2RH9l0St9/x10wJcJykaW6f78AGwqdzjJtr50HsYyN27c7CDugIG2OaeaNvf9JVsOZgtcLYJw97cmL/V7jvdiESNSzfXEl2RoDehRmcPL47k4fmM3lI89aUSUPTeXHtOELBLGZM/ia9ekyitm4/peXrWbLir2za+gqV1faevGbzS/xznxg75Xomjb2SnKxMQrX/JFSX6rprpKZmD7tLlrJ4+V9Zt/n5tGSqq68gO6uo4X9x0UR6Fk+hR9FYCvL6E6WY2pwbiATGJSkdYPrEryXZ3nbeK6vkmDeX8lZ5dco88VfZrlAW6zLzqQg0KtHVxvDf3fs7RL7WEgoGGNo7h1DwwJevhUv/xNvv/5qdu99n3/41VFRu6wIJD11cAPu5WEtDHfYmXId90J+bGOAONlQB+Cg2zul17JJea7Ej+FrEzRN0FtYK8D7wBZoual/pZOoFvIt1Y/wLGwQc4zdYl1GLE+IZY7a4+o7DWkj+jHX5JHMJxfMo9uHwIHaqnM9g3/zzJDU71NcFZ38Ea8WZj33o30PjqMfPAe8BT2NjeYS12HTqQ6ituAD2lP2nmQB3gPuwys0crPvoYrf9oI87gDGmDDgPq7AuAu4ArjfG/CNF/pb6x7XY5/UCrFut3MkdU25eAZY4WeMtThhj3sKe62uxLyWXAhcYYw5YYsQYs97JfQ7WmvUh7DGKpa919XzTtTeexpG1GGM2YCcS/ahL/x7wGWPMmy5L/DXzv8B6bBzcG1iL9M1Yy3KzVqzm2nHX7jlAMbbf/xN7f/hic3V2BDItDHeXlPY6H8aY11OlDRw40GzZkn7c5PqdVeRnh+jVrdHyW10b4bn3U7/wTRtewNDeHePSaolwpJbZb99Izx4TqauvYOfu5DP8v89wfqcL+PbAPK4bNYqdexazYPHtabczedwXMCZCr+JJZGe1HCaxZMV9bN72Br17HcPuPXZuq97Fk9i5ZyF5uX2pqNpOfcanKM4vobL0VYyJMmTgGWza8ip5uX04+fgfpS1ba/jdxp0Nc121lvxggEv7ducfO/ZxzaDejMrP5sO9itpXwFawfvOLrN/0PCfN+EHSc/L+B3+krGILlVXbkEIYE2bG5Gvp3TOtqYwOKyRtNcYMbDnngbjRhDOxMTNrgLnJlCuPJxluNGGT/tOcciXJABcaY1p+u/V4DoIWFay0KrH+2I8YY55Mlae1ClYywpEor31QQnl1YxxpQBA1cMzwwi4LcN9ftp6amhLWbPgPZRUbm80bJsDKoov44qSz2bLmQZAIKMjGra8ANDyAEwkGsxk74hMM7DeLYDD9+dLKyjexe+8Sdux+j9LyDWRn9SAajZCRkUPP7uMa2jUUUpDXl4rKVYSCOWRk5JGZWcDMGTe24kikxwt7SnlhTykPbk9vGaF4vjG4N2cWF3LLmm28V17VsP3GEf342qDeicOTO5xwuJoVa55g974lnDT9BrKyrLeoqnoPOdk9iIUqvDT7Wurq4wPyA+Tm9GTS2M9T3L1dvOuHBG1RsDyezsQrWJ6Opk1BS5L6YCdZ+zIwgMZRNh1CKBjgzCk92V5SzeY9tYQjUXaW1tOjIIP+xdktV9ABhMM1vLvodurqy+nT8/hmFSxDDmTM5MKiDIpCARbsWUhdfRmBQCbF3cdjomF6Fk8iM5TL9t3vUlq+kXC4iuIeE5k45nLyclofb1RYMJjCgsEMG3wOkUgdL83+FoFgkOL8MezYbUfjBgLdqMm8gn31u8hgFRPGXE6fXtNQBy1l9afNu3lzfxqz7hvDMLazOziAiqh9EbhuWD+e3r2/iXIF8OO128mQ+PKgzg0sX73haTZts0rqmwt+ysB+syiv3MKOXfMZM+IShg48k1fmfof6cFVCyShV1btYseZRZh7bkpfI4/F4PIcbB6VgSToZG7D3Max/fzlW0eoU+vXIoV+PHOojUXbtr6N/j6xOt1zEKCvf2GCZ2LnHLseYmdmNurqmQeiBQBbZBWexr/5ENu56FZknqasvAyASjbJ330okQ/eiMQwe+mEGDzyNSKSevfuW0at4Ek0HbbSeQCBEIBCiZ+5kdle+x/ZdjUtHRqJlBMKLCEStSz4UyiIUTDeWs/XcNWEIJXVhvrx0AyubW/5GhvX0Y0BGiNGZIcrDEZ7dU8p3VzSOtI0fANE91PmDHMrLG62y1TW7Wb3+X0gZ9O19LAGF2Ll7IVvCIe7lIi5hLiMTlpgrLV/Hzt0L6dNraidL7vEc3RhjDrsZ6z2HF2k/tSXluSG+i7ErYl+CHeb7BWPMBGNM4hIVHU5GMMCA4uwuU64AuhUOJxTMQXHGu0TlCuxM7Nlaw7ShBtW9SVZmAb2KpxJVL+py/pdwaCaBQBbrN79AJGKnVtm07TXeXXwH23clj+dqLXvWr6FuqegbajrHmDCEwm8QiG5BCtK7uGNjg3plZjAmP4eZRQU0b3e0c2Ad2y2XX4weyLrqOr68dANVcXN2xJSr4wpzGJCdQXu4vNNh7cZneWn2d9jj5glTJEjBpklk7etH756TmT7xqyxf8ygLl/2R/eSzmn7soihpXWs2PNMpMns8Ho+n80hnsecJkv4AbMOOWqjHrpM0GDvM+e1mih8FGCLROswB8wseSMn+ZWxY/1vC4Qq273qX3XsXIlONohsxgQHUMYZotJaKKhv83a/3sYwa9jF69ZjYLpIW9OpD71FjGT3pwpR5Tpj+/TZby9Ihagz3bttDMvuVTNROMmoADPP2VXLOgtUNRziZOv1OWTUXLVzL/6zY1GEyx7N6/VPU1e9r+G9kMMF6TCBCNGL3qiDfhiKNYSt38kdOYoXNSwaGxpH9hfn9O0Vmj8fj8XQe6TxJl2DXI/wlMM4Yc4ybeM2PNccucdO314xm8xiCGHeoq9x0DWUV1rUkKsio/QuGIGSexOCBZ5Cfax+42VlFjBr2ETIy2mdkZFZ+AaM+dAb5PXoxcuhHESGCgSwCbtqUkUM/QvduB6z/2SH8desestyksIlWrFu2fcBPti0BiW5Bsac+TBTIFIzKzmh25q7aaOdYsPKyE1aOCESpGLCCrP6ZjBt1GfX1lQQUJCvDjirMipuiJ5z5SQxZGER+bn+6F4056EW8PR6Px3Nokk7QygfYuTw+BmRL+ocxpmPWTzkMkcS0iV8huDyDLdsPXI3BEMSomEjoRDLq7bp1GRmF1NeXEQxmE4nUICDfPEddTTXDBv6wVaMED5bRwz/K6OEfBaCmdh/bdr7DkAGnd3i7u2rr+c3GnaytqqHGKUORhJlkb+szhr71NXQ35fww/ChvBmfwRHQKdQaG5eWwuaaeZBP1ZEncPq5zJqHuXjSS8qrGWDBDEBPoT3nlZvaVriEUyqG0fH3SssH6VxF7EAYpyOLlf0YYBvQ7qVNk93g8Hk/H06IFyxgzGTgBO8HZN4BFkpZI+kEsSwfKd9gwcuiF9O9zAqOGXdRk+yr6UUohoXo7MWgomMOE0Z+mf58TOeWEnzJp7JUAjB99CWfN+jl5uemuqZkeVdV7WL/pBaLRlMudkZ3VneGDz+lwxW5lZQ3Xr9rCvVv30DcjxNDsDKYW5JCZ4JLcH8piRU43IgSpIospRd2Yc9xYTu2ez0t7ywgExKV9m843FQJ+N34IWYHOWQlhwpjP0qdn43x+kYzTqM/+GiYwggF9T2TZqkcQyY9nwGxrmEG/omobBflD6FE0plPk9ng8Hk/n0Kp5sCTlAJ/CzmYcmz7/DeA24GnTTGXtMQ/W4cKyVX9nx56F1NaU8A0+zyXM5UMsAwLMGP8tdr23hr7jJtJz2EjAKkG5Oc2vQ3iwrFjzKOs2PccJ075Hj+72IV5XX8H8hbcxsN9Mhgw8o0PaTcYtq7dw15bGiWIzsAF9xRlB9tZHkIliksR/faFvMbN6FjCjMI9T56/gvJ5F/HjUAP62bQ8zu+Uzr7SSs3oWMiSn40Y+JqNk/yreWXgb0WgdRkWY0DSytZj6uv1pxeTFM3X8V+jf9/gOkrTz8PNgeTwej6VVr/vGmGpjzL3GmJOBcVjFaizwJM0vqHlUUVdfQW3tPnr1mspXeI7elNOjaBz9+hxLQc5AynftoHr//ob8HaVcAQwfcj7TJ32d7kWjKS3fyOy3b2Luuz+htHwDS1c9zFsLftYwarEjqYlEeXDb3ibbMl0M1t56q4xkR21we+Jkak/u2sdVH2xgQWklucEA1dEoOcEAXxnUm4mFuXxxUK9OV64AehSN5qyTf0tOVk9k9jO4Zx3dC4eSmVVI6kurMUQ/FMolJ8vO25WT3XF94EjFrRFnJLV5FIir54L2kKsVbWZI6pi1qDxHFYl9SdJ9kh7vSpkSkXSqu87y2/PabW/i7wWSNki65mDrOuiJg9xiof9P0vXY9YA+30KRo4ZJY69k7MhLyM7qzuT6CkLBbAJxa+gdf/mXCAQ7dE7WBjIz8unb6xgA5r33cyKR+HF7hvLKrURNpGNniAXqTZTsYJDyOFdlpYvBumZQL9ZW1zFtzxb2h8Os7j2Yl0rKG3zPe6NR8oMBnttbyuaaenbW7KMsHOE7Q/swOCeLnbX1jMvvmln8g8FMjp/+/yiv3EZR4XBenvMt7Hy7yYLWYzY7SzhcRThcxYTRn6V70YjOEdhzKPFp4EfAnV0tiOewJ7EvXUvyAdddyZvYBaorgaPijbLNMzMau67LE+7jAYLBDIJBGyOUmZF/QHpnKVeJRCNRrGWlc0esPbVzH19dtvGAVnuEApSEo2yvC/OL0QP5SSjIjtp6Xi8pP6COETlZPLLDTovQLzODF/eW8eLeMnplhCgJh1kycyI9Mjp/olGA3Jze5OZYS1QgkEk0eqBFcAlD2E8eJ7OCxOO/dcc8evaY0O7xd55DnkPtAeg5fGnSl9xi5ocUxpg6sDMtd+XclZ1JOvNgRdL8pI6i9nQ5b7x9I4Z6Eh/uudl9CHTwvFd/3LwrqUpXE4mSFRAL95dzycI1/GNHCXXRKDkB8bNRAzi5KI9jC3LJEJxQlMc3BvemX2aIjXWNVqDd9WHO7FFI91DXKK3xhMPVRKN1SE1lGT74fJ4KnMwDnEY0yZHYX7aGpase7iwxD1keOy2ix06LzHrstMiV7jvtu7BzO/xZUomk3ZIeltTbpR3gjpB0paSkK8dLOklSZczlIilL0o+cu6Ba0iuSJsflz5Z0u6Sdkkol/VNSX0nHu3ZHxOXtJqlG0veBe4Fil2eoS/+upI2SyiW9Lmk6nvS4+y5x912zuPuuK913s/3HHfcvS1rmzvczkgbEpR8n6WVJFe68z5E0xaXF+tQlkla4c/p6wrme7MpXStok6bqEsje5/vpkXHtzXVsrJV2rOE1E0rfd9jpJeyTdLSlT0qkk9KVEF6GkiyUtllTlvs9v5riklMNdNwsl/UDSPtfnb4xLL5T0d7df5ZKekjTQpTW4CJO0WSjp95K2uuP1lKTBcekbnByvuWO9UtJ5zexDd0n3Ozn2Sro31q6sO/UXknZI2i/pP5I6ZH6idJ6ssRP8OvAd4GspPl/vCAE9bWNf6RqWrX6Eisrk05b16zODYAcuiwNwXs9uSbfXGDg7FOZDW1ayvbyCEHBxn+7cMLw/4/NzmFdaxaLyKuoNPLFzH9tq6ygNNw0ezxB8un/xIfFGFArlMHXC1Zx0zA/o3XMqAJk501ixcyDX5W3lBh5NesEFg7kM6Ht0T9Hw2GmRIcAy4GXgd+57mdueDn8BhgNnAmcA+cC/1cqOIauE/Qe4xRgTc7f8HrgKuBo4BtgKvCAp1rHvAi7EumlOBIqAB4wxbwOrgU/GNXERdtLmW4FvASVYt8lmSVdj76Nfdu28DrwqqW9r9uGo5O67kvYft705fgLchD1v+cCTshQAzwHzgUnALKzv/zcJ5W/CLhM3C+iDnS8SScXAK9i+cizwVeCHkj4TV/Ys4DjgBtmXgReAf7v2vgtc78oh6bPAjVjX3yi3/QrsoLM3SehL8QI6BexR4H5gMvAA8M9kSkVLcjjGAecAp2Kf/d8FYnFKPwKGAh8Cjge6Y89HSzwBnAJcCpwE5ADPSIp3S9yMvdamAYuBeyWlGvr+T2AicD72OB9D47n7MXA2djWaE4HtwCuyg/jalXR8KqOBy7An8hZsQPvDwIvGz47YpVTX7GXpqocYOfRCigqHJc2zbcc8Nm61ixFnZRZTW9c00HzwgFM6XM5rhvThp+t3HLA9CsyuCrO/1wgEDM3O5P/WbsNg6J+dRX3coNQ99RGe2LmfABFOKypjdWUxEwryuW3cYIozu8Y1mIz+fY4DYPSwj1FbW0pJVT0mcwhje+WRXTGb7t3GUVW7l+rqXQ1lIpEqdBTPduIsVc8BI7H3pEyXNBJ49rHTIhM+8WqwuQMUwN6YB8QmQJb0aewDZyaQ7vDlIcDdwO+NMbEHZRFWufqUMeY5t+0LwFrg85L+CnwWuNgY87JLvxq4UtaU+ZCT7WeujcuAh4wxdZJKAWOMiblNvg9cb4x53uW9SdKZwBeB/0tzH44+rKUqZf/h7rsm8JWvpuo/txljHgdrncGe1xlYJeXnwK3GmAiwXtI9WIUsnp8YY2a78ncC33PbL8UGXH7RucaWSfo6UB1X9g5jzBpX9hbgbWPML1zaGqdYX4eNq9oKXBXrg8BGSdcCE1L0pXgZvwY8ZYy51f3/laRcoDDJ8fh6C3KAvd4+Y4zZjJ22aQr25eN3wDCgHFhvjKmUdAUtxFu5l5ozgWONMe+6bZcBm7AvLv9yWR8xxvzDpf8YWIRV5lYn1Dceq/xNMcYsdtu+ApzslKhvAacZY96KS9sEXAw82JysraXFJ5PrAD8GfuwO5GXYm1C2pEexN4ujfLmcjmHL9rksX/0IJ0y/nqqa3RTk9W+I9QGorNrFrj0L6V08OaWCNWbkJxjU/0MYDGXlm1myonHJyAF9Z5IRap9Z4psjIDE5P5vFFQdOD7o/ZK1nX+hfzF/iRhmWVtZwSvd8FpVXsT/cqMdHCVJn9hMMwvMlUd4preC8XkUdvg+tpbBgMDOPvZGVa58gL3cTA/sdz9ghf0QKYIxhyfJ7qarZw+ABp7N249MUFqRrqDkimYm9MSfej0LACJd+4Cy+jXzIfa9KeLCEgDGkr2Ddin04b4zbNhpruXgrtsE90OZjJ2Ae7dqZH5e+CrgBQNKDwM2SRgP7gdOwVogmOPfFYOAeSX+OS8rCPvQ9qWlL/5kd+2GMWSdpHzDRGDNf0l+AayRNwlptpmMDtOOJf7iX0ajcTQAWO+UqVv8DYF2EbtOGuLITgNMlVcRtCwKZkjKNMa9KmuEUizHAFKwla16K/YpnAgmKgzHmlmbyppTD/d/olKsY7wI/cC8UPweeAXZJehlrkHmoBfnGA3XYuTZj8u2VtNLJE1OwEo81NB7vxH2oxa5CE6vvLeAtp8xlAS9Jile6c7DHtV1p1au/MWYRVmu8XtIsrFXrKXcyHjbG3NTeAh7NBINZZGYWUF9fyYLFvyUnuycnHvN9srO6u1Frwzhj5m/IykruggMIBbMoLLCu7JzsYtZu7E1WZhFjR36C7t06b+TaFwf25gertxCNRjmvVzce39U0BnNzbX2T/yFgfH4Oqypr2B8Xt5SlOsrCWWyqKbIz4HfRgIF0GTPi4obfsTUeJTF5fOOg2/59ml9q6ShgJPZtP5mvus6lN6dgFbny0zhw4uPdWDdFIsnufX8HVgC/lPRvY8xuaFguM7HeIPZNvp5mMMaslTQP6ybci33oLk+SNdaRPwe8n5BWgac52tJ/EmOHA0DEWW0WYN2Oz2L7xlisFyex/nhiGn6z/cIR/8YZwrrJfphMRmcJuhu4x8nzI6y7LB3SkSUtORK+YwSw14cxxrwlaQhwAdY99xvgi5JObqbNZEvSQuM1FiPZfELJQgDqccIkSYtd92cBuxLS9qcW8eA46OhmY8wc4NfAHVgT4A+aL+FpDXPm38Lmra9z7JRvsXXnW4CortnDK3O/w4tvfJPZb/+QF964plnlKsbb7/+K95feTWZGPqee+HNOPOb6TlWuAD7ZrwdvnjCOQCBAUUZGkznOT+tewNDcrCbbwsC9W/awva7ptVxrMllS2R/jrqux+YkrGXoOQ9aQ/E0Ut72lOfaexs6BkWeMWeOs7iXYm/tgGm/M8S6RZEGtT2Dn9tuFvbfFZAtjYzUAcG/yx2CVsbVABKvcxdLHywbax1wjDwEfwbo74t/mGx4AbtTXDqybc03cfnwP6+7wpKYt/Sf+vI0GumGNCBdhH9Rnu7V3X8a6kNON6VsJTIqPIZL0M0kPpMi/HBibcO5nAN9zoTjXAL80xlxjjLkX2/dGxMnTnAt9Zfx+OllmO1d2a+UAGCop/qXlOGCJMSYq6XvAccaYh40xnwXOxV47Q5uRbzn2PDUM6HDXzii3n61lJZDlXIWx+s6XtBZYj72ee8ft3was5W1yssraQqsVLEkDJP2Peytbiw20ux1r5vO0E7k5vakPV/LaWz9g87bXib9+6sOxF9oolVU706uwFTP2dxS9MjNYOmsi/zd6IE8dM4qP9OrGwKwQVw3oyS0jB7D5tKl8pl8PgkBOQNw/eRgf61VEVopb2oW9utErs+PXbfR0OHOBdRz4ZhzG3mPmtlA+gg3KvV/STHdjfQDrKliNDWLdCHxb0ghJH8fGVR2AMaYe+CZwhaTTjDGVWEvBbZLOcXXfA+RiA9nLsQH2t0k62bkg/gDMN8bERik+gnXpnOJ+x6gA8iWNdcG6v8TGXX1S0nBJPwEux1pRPKlpS/+5UdLZkqZiR+K95jw1Jdig9XNlR+VdjV0qLt0RQQ9hrSW/lzRG0kew8U3/SZH/D8AoSXe4/OdhB1fE+lAJcJqkcbIjWB/EBrTH5EnsS/HcDnxc0tdc/78Oq3C9cBBy4Nq8x71IXIo9Lre7tMFun0+SDaK/HPvCktJN71zqTwN/ddfvFGyc9/ZmjldKnIX4eeDPko6RdCxWgXrevcjcCdwh6VxJo4A/AadjFb12JS0XoaQ+2Ij7S7H+7M3AP4CvGmMSzdmediAzVMCO8vnN5gkog1Co5YEPx0/7bnuJ1WYy3VqB0wvz+NPEA+PGbh07GANURqKc0qOQU3oUUh2J8r0VG3l1XwXDc7L40ch+vFRSycV9k3l+PIcbn3g1aB47LXIuNlB5ONbilIl9OJ7bQoB7jM9hLVZPY+9rc7DWhxpoCGD+PVZZeRsbI/WrZBUZY16U9ARwl7vZX4cdk/EAkIeNxzrFGLPdFfkONn7rKaxF4Rmskharb4+LR8mMBeE7XsHGiSzEKl93YBW3XwO9nKwfiQXqelLwla8a7r4rZf9pJsAd4D6sUtEP+zCPzYb+KPZZ9yDWVbUEG8h9n3sot+QaLnPKye1Yi9h27ACGf8TFYMXn3yLpXKyS/RWsQnM3dpQi2Li9e7Buy33YPvYHGi1TiX0pvu63JH0O+F+shXYpcIExZt1ByAFW2VuCjf8qBW4wxtzv0q7D9uMngQJsfNb5xphaNT+g90rs9fsf7PF+CRuIXtVcoWa4HBt0/xrWFfsP7GjHmIxR7KjKfOwxPTvuem43WlyL0N0YPoSNZXgc+Hss+r41HE1rEbaV6poSXn3zu7S0jnYwmMM5p/yhc4TyeNJAbViL0I0mnImNmVkDzE1TuTrkkfQ+dtTYfV0tyxGLHU3YpP80p1y5IOcLjTGttpIcrbgXlV8bY46KmdjbSjoWrNOw2voWrC92RipN1BhzdE/m005kZhRQmD+Usor1TbZLIQKBDHJzepGb05tu+YO6SEKPp/1xytQcmg9oP6xw1oBZWNfJY10szpGNVaaOqP7jObxJR8H6Gy2ZUjztxjsLb2NfyXqC0eyECLkAxoSJRMKUV2yivGITQwacztz5PyYnu5j+fY9vWHPQ4/EcMnwTO9HkF1w8l8fjOUpo0UXYXngXYXq8POf/EdxcRLC6gPIhi0BBIsFJBCKLWpyMMiurO8MHnc2wwed0krSew5WyPbtZ+Px/GHPSh+gzrP1GlLbFRejxeDxHEumsRRhV8rUHayVtk113y5tO2okPHX8LdQW7qe1mRwdG1Z9ocFJaM33X1u5jxVq/5ranZV6+5y7m//sJHv7hd3jg+m8BsGPtaqor/ZRLHo/H0x6k4yL8GsldhAGgGBsAP1vSycaYBUnyeVpBRkYe4dxyyC0HQGYHwcgyDMknYDFANDiBQGQDRYX96dNzSmeK6zkMCdfVsWfTBgCi4TC71q9hyasv8cIfbycQDPKVu+4np7AbGxYuYMDY8WTmdPxs/x6Px3Okkc5SOX9sKY+ku7ALUX6sHWQ66snN6U2VW6vOkAeRD1LObifAqC+RUE9Ky16ntnYvI4emXCjd46G+rpayPbubbHvhj7cDEI1EWPLqi+zasJZVb83h+I9fyqxPXd4FUno8Hs/hzUHP5J7AvcAJ7VTXUc/MGTcydcLVgECZBKglSi9qs68jqr5N8hpA0b0Ew3Y5yBFDvHLlaZ6c/ALyi4tTps/5+/2semsOwVAGfYeP7ETJPB6P58ihvRSs7dglBjztQEZGHv37HMf4UZfFOWczCIbnItPU8iAgGF2IqCEUymPIwNM7W1zPYchnf/obPv69/2XYtNTrIEbC9bz5+MOdKJXH4/EcObRqsedmGMqBCyd62khuTm8C7rAG2EYgvK3Z/FPGfb7ZdI/HRA0Lbo8SyuzG1GuOJTs/n/Xvv5s0byAY4tTPfamTJfR4PJ4jgzZbsCTlYKfRf7Ht4njiKSwYRE5WaldOPIFAJn16TWs5o+eoo7Y+wqIH63j2igjv3RFl/dOwfZ41jfYaPIzu/Qc0yT9w3AQCwRC5hYUMntDu6596AEmnSjKS8rtaFs/hj6QMSV+L+3+fpMc7oJ1T3LqN6eS9WdK77veVkva0VCau7McldfpM2vHHLV7+g6VFC5akVD6CAFCEXVW+BrsWmKcdyc7qzmkzf0VdfSUvzf5GQqqI+Q8njfsi/Xsf1+nyeQ4t6sJRfv3CCs6b2I89ZiN3LvwvHx5+LE88kcfO/bV8f/MpZBbCwFNh6jV22ERGdjZX3fZHqkpLee3+P7FhyUJmXno5fUeM7tqd8Xg8reHTwI+wCxmDXbuw2cX/DpLXgAuxax52CJKGAP8EJmHXPT5sScdF2C/F9nrsoo8/B/5qjNnXblJ5mrBv/2oAsjK7ccqJv2Dr9jcpKhzK1p3ziEbqGNTPr1B0tPPqil0s2r6dexbP4Z45Qxg+bB+btIO1O2fz4V6fZuOGMAVD4PgbRH7/poZrSeQVFfHha6/rIuk9Hk8baaJMGWNKu0qQdqAjFMMuoUUXoTHmtBSfs40xnzLG3OqVq46lT6+pTBn3RU465kZCwUyGDDyVboVDGT/qU0wce0VXi+fpQirqqnl48Xyuum8+f5j9ARl9PiAwYA6r1/agR8mH6VF2Cjd8YSQP3zeJc+8LHqBcHUrceukFuvXSC2bdeukFV7rvZm+0zsX2CUmLJFVLekHSIEkPSKqUtErSaXH5j5P0sqQKl3+OpClx6ZNdeqWkTZKuc9uHurZuklQi6Um3fYakVyWVS9rq0gMu7VRJ+yV9XtIOSfsk/VZSRsJuXCFpg6QqSU9L6hknz2clLXaTOu+X9Kikorj0T0pa6fblP67+++LSz4s7NkskXXYw5+Vw4c2nlunNp5bNevOpZVe673T6z5clLXPn/BlJA+LSU/aXuD5xiaQVkmokvS5pRFz51van4yTNdW2tlHSt1Ljwr6Rvu+11kvZIultSpqRTsSP5i129QxNdhJIudn2pyn0nHW4uKSTpD5J2uryvSJrg0ja4bE9LujkdmZs59udKmufKVUh6TtJglxxbhHeJ7OLSre7Lkq6WtNrtwzxJx8elddp1cejebT1NGNDvJHJyenS1GJ5DjL8te5UfLfgrgYIt1NfkMLn7MI4b3I9xo/ewvSTC7ZfOoCA78Zl+6HHrpRcMAZYBLwO/c9/L3Pbm+DnwDeBkYBqwGOu+OAZYCtwNIKkAeA6Yj3U9zAKCwG9cejHwCrAVu3bgV4EfSvpMXFtnAccBN0gaBbwOfODyX4NddzDeDJgPfAv4KHAJcLGTN57PAB8HznQy3+jkmQXcA/wUGA1cCpzq2kDSScBDWJfQVLff18QqlTQReBz4LTAR+CVwd6oH6+HOm08tS9p/3Pbm+Ak2hvhE7Pl6UpZm+0scNwFfcul9sMf5YPpTb+AF4N+uve8C17tySPostm9cC4xy268APgW8ie1nJViPUxO3mlPAHgXuByYDDwD/lDQ8yfG4Bjgb+LDLuxd40KUd674vB37dksypkDTMlXkIGAecBwwHbnZZYvEupwL/aG1flvQ54DbstTMZeAt4RlJBZ18X7TWK0OPxdAEn9hvLnxY/B/0XMrFoBPWqZ0RRH7416ULuzVrPwO45XS1iizhL1XPASOw9KdMljQSevfXSCyZ85x//SbVW1O+NMW8ASHoFGGWMudX9vxt7Y80E8rDKza3GmAiwXtI92AcsWAWmHviiMaYOWCbp60B1XFt3GGPWuLp/DawDvmnsgq4rJPUFfibpFy5/EPiKMeZtV+ZG4DZJ34ur8xvGmPdd+qPAdLe9GviSMeYR93+jpBeACe7/NcDTxpg73P8bJMXP0fJd4EFjzD3u/1pJ44BvA8+kOJaHJc5SlbL/vPnUsgknfXR8qv5zmzEmFtR8JbAWmIFVUprrLzF+YoyZ7crfCcTObWv70y3A28aYWN9Z4/rTdVgleitwlTHmOZe+UdK1wARjTJ2kUsAYY3a4+uJl/BrwVOy6AH4lKRcoTHI8hgFVwHpjzF5J1wBjsJXvdvXuN8ZUSPpuCzKnIgR82xjze/d/g+v7Z7n/sbmI9hpjql07renLXwf+aIy51x2L/weEsSvPdOp14RUsT4exc/f7VFTtYMSQ87palMOWytIaFr+xjtz8LIoHFFKys4Lxxw8ilGkv3bWl26mJ1DOm+0Ae+cj/cP4/b+Zfa+ZxxuAp3PmZw2aJ0JnYG3vi/SgEjHDpc1KUXR/3uxrYEPe/BhvPkWmM2SHpL8A1kiZh35ynA5Uu7wRgsXsYAmCMeQCsS8dtiq97PDDPKVcx5mLnA4y5meqBt+PS33Xp8aOj1sb93g/kuLYXONfJjcBYrIVgAvAvl3cy1gIQz1tA97j9mZRgMQnR+PA6kmhL/5kd+2GMWSdpHzDRGDO/hf4SY3Xc7zIalbvW9qcJwOmS4hcDDQKZkjKNMa/KuqR/jFV4pmAtWfNS7Fc8E2i0QsVkuSVF3t9jLarbJb0BPAX8rZl6U8qcShhjTMx1dx32OpqAtcIuaqad1vTlCcRZGp2C/F0A5+7stOvCuwg97U40GmH1Gy+zatWTrF7/LyKR+q4W6bAkXB9h8RvrMFGoLKtl0/LdVJRUs3H5Lmqr6qiqqOWk4FhOGTCRDWU72VZRwu/PuJpTB01ieFHflhs4dBiJVUaSUefSUxFO+B9Nlsm9WS8BLsC6km4C/l9clnQ6aU3c71oOXKM16L5j99WIMSZenobtcdvif4ML8HXWqMVY18kbwOeBR+Ly1dP8/TuEdZVNjftMxK4de6TRnv0nAETS6C/x9ccTMx21tj+FgCdoer4mYZWpsKQrsMpgd+BZrLt5bhptpCsLYJUfrEv6k9iXlxuB+ZKSTSTerMyp2nBKznLgeGAB1r3562bEam1fbm5/O/W68BYsT7sTXbuWfetWUzzkGKYdN4Ng8NCPAepsKvZXk5EZIpQZxBiDJIIh+7ysra5nyRvrqatJfo/au72cnRv2E8wIEKmPcs6wadRE6ijIzGFwdi/+eObXkpY7hFlD45t/Ipkuva1chL3xnh2zOkk6h8YH4krgk5JCxpiwS/8ZMBAXF5XAcuzDN56TsFaM7VjFKFvSOGPMcpd+HDamZatLb46rgUeMMVfFNri4r1h8zQfYmK14ZtBoEVsOjIy5oFz5a4FewA9baPtwoy39ZxrOCiRpNNbCuIiW+0tLHEx/Oi/hfH0KOMMY8yXnqvulMeZ/XVrMOveOy57KBRqTpckkiZJmAw8lrjUs6YtAuTHmH9h4tJuAbdi+9XIrZU4lz+eA940xF8eVi59WInFfWtuXY/v7d5c3gLU0fvMg6moTXsHytJ2aGnjiMaioAImQMRwLmFHTCOT172rpDjmikSiLX19PIBQgGo4SCIhgRoD8Hrnkd8umeEAhdbUpXwAJ11qjh8HQc2AhJ04ax0WTD+upOuZi45liMTQxwliFId039eYowQYhnytpOXAuNjg+ZkF6CLgF+L2k32Dfwr+ODWBOxp3AtZJuB+7CujpuAe40xtTHPVz+7GJv+rr03xljIs08fOLlPUXSNGxMzNewQcaxFTPuAN6S9A1s/NFl2EDr2IPj18Dbkr4PPObK/hxrLTjSaEv/uVHSWuxx/QPwmjFmkYvLaa6/tERr+9MfgG9KugPbt4Zj3XV/duklwGmSHgEygBuwAe1ZLr0CyJc0lqZuZ4DbgTdkJyJ9Hmv9mkbyuSu7Az9xrtJVwGexlralce2MdwpaSzKnogQYK2kmsAMbqH8J1lIYawNgsuzIxdb25d9gr7v3sYMUrsG63ue69jrtuvAuQk/bMcYqV7HfEgIC+/d3pVSHLKvfs0seRcPWexSNGuprI+zbXs6WVXvYtmZvWvWYsCEYCiYGtB52uAD2c7HKQR32BluHfes8t5kA99bwKPAXbCzKQuzovauBPEmjjDFl2NFME7AWjDuA692b/AEYY7YA52NHny12+W/nwLfgJ7Fv/g9gHzw/TlPe/8W6aGZjXYT9saOspkiSMeZd4CpscO4SbHzQUziXlTFmAfAJrOK1FDui6gZjzN1ptn/Y4ALYU/afZgLcAe7DKgpzsNbBmFWl2f7SkkwH2Z/OxVo5F2H7yt009qdrsc/rBVgXYbmTO2aZegXbDxbSOFAiVvdbWGXqWmxfuBS4wBizLokot2FHG96LtQRdBHw0FjyPVV5uAX6chsyp+K2T9xmsBe5krIIzQlKBMWYv9rzcix0k0qq+7AaG3IhVnBa7Y3SuMWZ/Z18Xahqj2XEMHDjQbNmypVPa8nQBTzwGe/ZAdjZ86tNQVwcFBV0t1SHHtvUlbFi8I2la36FF9B5cxNI3NxEJJw0lOoDhU/rSd+ihM32HpK3GmIEHU9aNJpyJtUSsAea2k3LV6cgOjX8VKDDGVDSf+6DqPw7rylket+054E1jzI/au73DATeasEn/aU65kmSAC40x/+kkET1HGV7B8rQf0SgEvFE0FdGoYd7Ty62VDyDB8iRBZnaI2urU7sFkdOuVy/gThxwSlqy2KFhHEp2gYH0TG3T9WWAj1pJwOzDDGLO0maIeh1ewPB2Nj8HytB9euUpJNGqY/+xKAPIqV1CZN4bEeFljaLVyBVC6u4pIfZRQZrDlzJ4jhTuBIdiRhd2xwbuXeOXK4zl08AqWx9MJSDS4/SrzRhOIVBEN5TekBzNEpN6QldN6C1YoK0Ag2PXWK08jxpjX6MA11dzItO+4j+cgMMb4i8bToXiTg8fTCUgiO9+NJFewiXIFkJVj0wqL81pdd7g22uwYbY/H4/F0Pl7B8ng6iTHHDqT34CL6jypm+OQ+TdKqymoZc+xAKkqrU5SOIyFuMpQZIBj0l7LH4/EcSvi7ssfTSeQVZjNyWn+Gju9DeUkNmTkhFOfaK9lRTnZuyhUmoK7WfkuNSlYAJs4c2nFCezwej+eg8AqWx9MFBEMBsvMymXHWKIZP6UdhcS57tpRSW11PflFW08xRN2VDZhaEXXyWGzHYvXc+uYXZnSi5x+PxeNLBB7l7PF3A8Cn9Gn73Hdqdnv0LWf/BDnZvLm3Yrp2bMTl5EMqEXBuzFcrOoHhgN3Zu2E9WTohhkw6rNQc9Ho/nqMErWB7PIUAoM0jFvqbxV6aoJ2TlQNitXSoIhw2R+ijZeRmMnDageZeix+PxeLoM7yL0eA4Reg4obLohK8d+hzIgAAXFOQyb1JfhU/ox/cxRFBbndr6QRymSJks6rQPqPVWSkZQvaaj7PbG92/EcSEed0zTajZ3n+M9eSQ9J6tnZ8nQVkk6RNNX9brgOOlkGI+kC93uDW1S73fAKlsdziFDUOx+luiKjUF1WS7/hPQhl+AlFu4CnsOvKeY4cuvqcnopdsHkgdib+odj1944WXsPuO8Cb2GNR2WXSdADeRejxHCIU9Mjl2HPHsGn5bjJzQuzesp+8gmzK9lRRVxdm/AlDulrEoxk/KeWRR1ef071xiyhvlfQL4ElJ3Ywxpc0VPNIwxtQByRdpPYzxFiyP5xAilBFk+OS+DBzVk2mnjWT0jIHMOHc0J31kPPndc7pavA5ly/WzteX62bO2XD/7Svfd7APQmfc/IWmRpGpJL0gaJOkBSZWSVsW7gCQdJ+llSRUu/xxJU+LSb5a0RVKNpHckney2v4ZdluZ3ku5LIctkV3elpE2SrotL6yvpUUnlkrZKurOzXSFHA3Pv+YPm3vOHWXPv+cOV7jtl/0k8p5KelfS3hDy/kPS8+20kfVnSMneOn5E0IC5ve5zj3c0lOjnvlvSIpCpJKyR9PC4937W7TVKdc3l9I36fJd0i6SnX/zdK+lxcerak2yXtlFQq6Z+S+saVvcu1uVPSCNfenyWVSNot6WFJvePqS3m9Sdrgsj3trrsmLkJJgyU96Y7nDkm/lpTUdC+pu6T7nRx7Jd0bV0+GO487JO2X9B9Jw1t5Xg4ar2B5PJ4uZ8v1s4cAy4CXgd+572Vue3P8HPgGcDIwDVgMLASOAZYCdwNIKgCeA+YDk4BZQBD4jUv/mKvn08BYYB7wT0kh4CJgC3ADcG2iAJKKgVeArcCxwFeBH0r6jMvyTyACHO/qmgr8Na0D40mLuff8IWn/cduTkXhOHwQ+KikLQJKATwIPxZX5CXATcCKQj7U2xZS4Np1jSd2xi3f/uwXr1ZVYRWw68DfgMbk4Juxi38cBFwLjgPuB2yUNiyv/Pex1MBX4N/AnNcZ93eXKftrtYxHwQFzZq4CvYxfIXgv8BRgOnAmcgT0m/5al2esNe50AXA78OuFYZAIvAjmu3CeATwHXpzgm/wQmAucDZ2Gv/Vg7PwbOBi5x+7QdeEVSp7ytehehx+PpUpyl6jlgJPaeFBsaORJ4dsv1sycM/PnJqVYD+r0x5g0ASa8Ao4wxt7r/dwPPuBt2HlYZu9UYEwHWS7oH+9AEGAbUAhuNMRsl3YCN0ZExpkRSBChP8fC7FKgHvuhcHcskfR2olrWgTQJOdWlIuhJYKWlgkro8rcRZqlL2n7n3/GHCzC98vUn/STynkv4F/BE4D3gS+zDuA/wrrthtxpjHoeEcrgVmOGtJynNsjNmSQvR3JEWxrspcbPzRKS3s7jrgm8YYA/xU0rnAl7CKz2zgTmPMe06G/8MqhGOB9a78q8aYu1z6D4BrgGmS3gE+C1xsjHnZpV8NXBlnOXopLm04tt8PMMZsc9s+DZQAM4E1NHO9GWN2O910vzGmolFPBazCNhSYZYzZ7er+CjZGqwmSxmNj2aYYYxbH5T3ZKVHfAk4zxrwVl7YJuBirVHcoXsHyeDxdzUysgpN4PwoBI1z6nBRl18f9rgY2xP2vwT68Mo0xOyT9BbhG0iTsG/50GoNqH8JaB9ZJmgc8DdxrjKlPQ/4JwOLYwxXAGPMAgOyopDygJOEhAjAGa/XwtI229B8AjDFVkp7EWq2exFpM/m2MKY/LNjsu/zpJ+7CWkzyaP8epFKyLgdXYPtod+AzwqqTjjTHLU5SZ65SrGO9iLTZgLVoXOsvpmLjt8a611XH7UObkzQRGY4/X/Lj0VVgLHy7fhrh6xrvvVQn7HALGGGPmtHC9NccEYENMuXKy/LeZvLXAkri8bwFvyY7GzQJekhR/zHKwx6fD8QqWx+PpakZiLUBZSdLqXHqqB2Q44X80WSYXS7IA60Z6Fvg79s3+FgBjzC5Jx2BdHedj3XzfknSiMWZ9sjrjaE4JCwEbsa6LRLbT6CrxHDxt6T/xPAg8LikX65b6ckJ6Yl8LYBXkls5xKjYbY9bE/X/HWaQ+D3w3RZlUMgDc42T4m/t8zckVTx0HIprvwzFq4n6HXJlpcMBa87tbut5aIB1ZmuRNUDrjZQR7THYlpO1vRRsHjY/B8ng8Xc0aGt06iWS69LZyEfZmfLYx5jbn6hiCG0kmGyz8ZWPM88aYa7FvuDnA6a58KhclwEpgkovXwtX3M0kPAMuB/lhX1Br3QA0BtwKFSWvztJaD7T+J5/QlrIXlOlfuuYT0abEfkkYD3YBFtO85Fk0tTolMS/h/LLDIxTx9DrjCGPMDY8yj2JioWJ0tsRarqMXv43gXvJ5sbq7lQAaQF7fPJdjYp8G0cL21wEpgiKQecbJ8VdIbKfJmOVdhLO/5ktZirdthoHecjBuwrsvJacjRZryC5fF4upq52NiSxLfzMPbGP7cd2ijBxtScKzvR49XYoPaY1SME/FrSJZKGYgN984H3XXoFMMYFtCfykCv/e0ljJH0EGxPzH2yw7lLg75KmS4oFJ/cyxjRn3fCkz8H2nybn1MUKPYINBH80iXv4Rklnu6Dye/9/e/cdHld15nH8+45G3d2WsUHYYGMwcWxIwTwBYloA05tDICa0kDykLVmyG7JJIMmybCoQQoCHhRCyxhATQlvWlATTwcRLDbibuGIbGTf10Wje/eNcobE0ozpIsvT7PM88ku4959xzZ0aaV+e8517gGXd/k66/xiMtrD4cY2YTzOxawmjbvDbqTDezq8xsfzP7EWEa8FbC6FI1cGb0/j6S5gT9TCN7u4imQu8Arjezz0bTazcDi9x9S4byywhJ8n8ws8OjAGcOYcpuBe3/vkF4/j9mZkNbNP8k4XW708ymmNlRwA8Iv08t+7EEeAK43cw+ZWaHEAKoJ6J8yVuAG81spplNAv6L8E9TtinYnFKAJW1qSDXw8tanea9uHTWNNbxbvYzMo7EiXRMlsM8kjDQkCH94E4Q/1DPbSHDvjPsIHyB3E1YZzgYuA0rNbJK7/4mQEPxLwn/F3yWMBrwW1f8tIUer1cowd99JSI6eQhjRuBH4nrvPc/cUcDphSuJZwijJKuDMlu1I10QJ7FnfPy0T3NNkek3vAYrYdfVgk7sIQccLwDpCDhXdeI2fIUwhbgTeBo4GznT3V9qo8yRhlOlN4AzgJHdfHgWDXwROIAQPdxCm5RbSetQrm+9EfXqYkG/2HmGVXzYXAq8R8hUXEkanjnf3Otr5fYvq30CYMrwmvdEo0D2NMIq4iPBa/I4Wqw3TfInwejwDzAeei84Fwu/xA4QVlW8QAtjje+qfG+upD8vy8nJfvz5brp/0VVvqN/PnjbtcHoaPD/4kh488tpd6JH2ZmW1w9y6tjotWEx5O+CO4EngxR8GVDADRasJd3j9tBFcZmdnphMsdTEjP64mSpE9191ajKD3FwjXYBrn7rN7qg3SOktwHsEZvZHnV25QX78PgeMtR2iA/1jq1YV3talZVL+WVbc8zumAMM0YdT0Gs3VFokTZFwdQLdCwhWWQXUTDVpfePhWtFHQL8GLgtS9K0SKcowBqANtatZ0h8GPM3/4mtDVsYFh9JQayAo0edyLCC5hSTBRWPsqW+ghF5ZWxtbL7IcKEV8c7ON6hMbqcyuZ2N69dxdNnJlBfrVi4islvamzBV+BxhBEuk2zRFOAA0pBoApy5Vx6qqJbyy/TnCdPmur31JbBBD84cTM+OoUSczd/2trdraq3AfNtSvbrU9nwKK4yVMLJnMQcOmU6gRrQGpO1OEIiL9iUawBoCHN91DZcMOEl6ftrV1YF2TqqKgsYARBWXsaPggY1uZgiuABhI0JBO8vnMhCa/niJGfy0HPRUREdk9aRdiP1TXW8nTFfLYmtrQIrrKrTO6gMrmDPItz5MiZnT5mAQVMHjS10/VERET6E41g9WOLK19nefU7GfcZhmcYxWqkkYrEJh7edA+FXbgf5vDCUYwq3KPT9URERPoTBVj9VMpTrKvZ9S4J+eTTEN2FIFNw1VK917VbBqA4VkJtqobjy05nfMl+ne+siIhIP6Mpwn4q5Sk2Jzbssq0or4TxxfsR6/DLHoKwsvwxbZaqTdUwbcgh7Fu6PzHTW0pERESfhv1UPBYnz8ItrfKj23SVxgaxtnYVqeh+uCWxQVnrp6to2NRumVXVS1la+fd2y4mIiAwECrD6KXenMFYMGPl5BRgxtia37DI1WJOqaredvA7OIlc3VrKqemlXuysyoJlZvpl9Pe3nu8zs/m60d7yZuZn9OicdzHyMi8xsS/T9UdHxOvZfm8gAoACrn3qvbi3VjZWAU5o3iBNHn0Xc84m1eaP21hpb3T+1tQKK2LtoH44edVIXeysy4H0R+Pe0ny8HLu1Ge7MJ9+KbbWatb8cgIh85BVj91JiicsYVT8QwKhKbeOz9B6ihihSNXWzRsu5JUMe6utXMe+93vFe7rovtiwxou/yCufsOd9/epYbMigk3Gv4PYChward7JyKdpgCrn6pq2Mna2lUfTgl6lHfVVXFrf6owkarn0c3zWFezulvHkoFp/oJLbP6CS46Yv+CSi6Kv2aN6wg14zeyrZrbYzKrNbL6Z7ZW2f7qZPWVmVWZWa2YvmNlB0b59ovqzzGypmdWZ2bNmNjGt/rSofrWZrTWz77aoe7WZbTWzh9KO92J0rGVmdrmZWVp7V0TbE2a2xcxuM7MCMzsK+D0wMmp3n5ZThGZ2tpm9ZWY10de2hotPB0qAR4GngYvbeR6PMrOFUdsrzOzCtH37m9nj0b5/mNk1ZpbfVnsiEijA6qeWVuU24TzpDR0q5ziPvX8/d6y+gbvW3ER9Y8cu9dBXJbdto2FTc5K/JxJ4Mkn9ypXULV/eiz3rX+YvuGQ8sBh4Crgp+ro42t6Wa4Grgc8Ag4CHLBgMPA4sAqYCRwB5wA0t6l8NfCXavwfwCwAzGwksADYQbgL8NeCHZjY7re5xwHTg+2Y2GngSeCQ63r8C34vqYWbnA1cRpv4mRdsvAM4FXgK+DWwFxgK7DANHAdh9wB+AacAc4AEzm5DlOZkNPO/uW4EHgZlmNjZTQTPbP3qengUOBq4BbjezI8ysCHgCWBLtuwT4POE5F5F26DpY/dCyyrepbNjRa8d3nEaSNHqyQ9fb6svWX/Y1apctY8jMEyieMoXNv/glsZJiUnX1UF9P4YEHMuLCCxh2xhm93dXdVjRS9TiwH+FvUlPO0H7AY/MXXDLlpGPuzPZGut7d74eQdA2sAj5NCFJ+Blzn7o3AP8zsd7QODq519+ej+rcAV0bbvwA0AJe6ewJYbGbfAGrT6t7o7iujuj8BXnH3n0f7VprZGOC7wC2EQO1id3882r/GzC4Hprh7wsx2AO7um6L20vv4deBhd78u+vmXZlYCDGn5ZESB4QnAFdGmB4GbCcHcz1uWJ+R5LXb3pvNebmbDgHzgPCDh7v+ctu+fgEfM7PsZ2hKRNAqw+qF3Kl+nIrG5R46V7YrwEFYgFuV1/mrwfUn+3ntTt3QpOx96mJ1PLYCGBlI7mkfz6pcsYfPPfk7+nntSOn16L/Z0t3Y4sC+t/x7FgYnR/hey1H2+6Rt3f9fMtgEfd/dFZnYH8E0zmwocCHwSqG5Rf0Xa9ztpDu6mAG9FwVVT+3MgTBFGm1an1Z0CHGNm6Utz84ACMytw96fN7NNmdg1wAHAQYSRrYZbzSjcFuDt9g7v/JEvZcwjP24NRuc1m9hJhmjBTgDWFMMqX3vZvAMzsV8DEFudkQCHQ3siiyICnKcJ+6PjRZ5DpZs4fhbZGqE4oO6NH+vBRSSUS7Jw/H6+vh7IyqKzMXG77dtZf8R1q3nijZzvYf+wHZJuDTkT7s2m5zDUGNEajR38HTiFMPV4N/EuW9tM1DR11ZE48ff47DvyZMJXW9JhKCKaSZnYBIRgcDjwGnA282IFjdLQvTc4nnMMaM0uaWZIQoB5gZod1su048DK7nlNTYKjVLCLtUIDVD/214pGctWXR54118K3SVH5ofDijinbvexKuufhiSEWLAyoq2iyb2rKFNeeeR9ULHfzM3LkR5pwBc8/pXif7h5U0jxy1VBDtz+YTTd9E+URDgTeBswjBw/Hufr27P0UYdWkzcT7NMmCqWfPqDjP7qZnNyVJ+CTDZ3Vc2PQhTlVe6ewr4JvALd/+mu/8eWEoYnWvqT1v/ES1LP8+oL8+b2WUttu0LHEbI9To47XEoYWrzkg62PdfM/jM6p0nA+rRzKgd+ij47RNqlX5J+aHj+qJy15Xg0DdixVYiOEyPGueWXUpxXkrN+9LQP5syh7tXXOl2vbvmy1htrt8O26L6Qb9wD102G6yfDqqdhxROQ6uqlM/qNF4F3aT0alSTkVLUVtV5l4aKaBxNW4j3j7m8SEsb3ICR47xMFI98iTG91xFzCCM5vzewAMzsN+AZhZV4mNwOTzOzGqPyJwG+BLdH+rcDRZnagmU0jTPmNTetPFTDIzCZnWKX3a+BMM/u6mU2MVjN+gpBUn+6LQA1wk7u/nfZYBNwLnBPlbqW7FZhmZj82s0nRCsJZ0XneDTQCd5nZFDM7ArgDSLp38EalIgOYAqx+aNqQT+e0vVILubQllHao/IyRJ+T0+D3t/Rt+zfu/uq79ghlsm3sPJOvhldugMlp9eP/FcPOh0FAL7y+BqrRbD1kexDp38df+Jkpgn0kYqUoQgo0EIT9qZhsJ7gB3EYKbFwjTVmdH2+8jBAN3A28QVtZdBpSa2aT2+uTuO4ETCTlKbwI3At9z93lZyq+PzmF6VP524Dbgh1GRywl/b18lTBFWRv1uGj1aQJjSfIOQK5be9svAhVEb7xAS8E9x93dbdGM2MM/dM61wuRkYTFgFmN72asJ1sk6Pjn8lMNvdX3L3akLC/EhCntYDwF/p3gVQRQYMc++ZXJ3y8nJfv359jxxL4PbV1314z8FcGREvY2uy7akygEOHHcnBw3bfhO9VJ51M4t2Wn10dUzBpEhOv/xbMnQVHXglHfx/e/jNsXgzHXhUK7XgPtv0DKpZC6Sj42Ok57H3vMrMN7l7elbrRasLDCTlXK4EX2wquzMyBU90926iSiEivUYDVTy3Z+RZv73yN0YVjWVG9uEO3vGnLCWVn8cIHT1LdgfsXTh3yKQ4bcUy3jteblh92OI1bt3ap7qRFfyNeWgLvPAj7HQvFw3Pcu76tOwFWF46lAEtE+ixNEfZTBw6ZxufLL+LIshO4aNy3GJTXfMmceNZ84uye++BxGlINFFHUbtnxxW0t+ur74nt0PTl/23/PCVN+U2cNuOBKRESaKcAaEJyh8eYP+2SrleltG5E/mtpUDQnqqaPt3FYjxpD8YV3pZJ+xx4+u7lT5vL0+vDsLpZ89ItfdkSzc3TR6JSJ9lQKsAaAuVcvG+nUUxZov+hmnY7cTyyOPWXtewGljzmXPwnFp9Qsotl2T3o0YM0Yex+B4qwtM71aq/vLXjhc2Y/hZZ2ElJRCPEx827CPrl4iI7D4UYA0Ag+JDmL33ZRw76hTyLR/DSNJARy4JFLd8zIwYeRw4eBqFFqYIkySo9WoMo8DCSvOJJZOZPHjaR3kqPWLEhRdQcuQMyG8OQvOGtZ4atZISMKPqmWc44NX/Y/+FCykYN65VORERGXh0q5wBoiSvlJKSUi4edznra1fz9Jb/pTZV204t46ChYTXgwm3Psrl+w4cXEgXIt3yKYiXsWzqJDxIVTCjd/yM8g56TP3o042+7jVQiQf2yZeSPG8eGK64gNngIyZ07qHvpZQoOOICxP/wBDRs3Eh+9B2ZG3qCOXcZCRET6P60iHKA21K7h0c33kUcccBppZExhOe/XbyRFIyeWnc240gkflt+W+ICaxioKYkWsrlnBxwYfRGl8cO+dQA+ruOUWtvzmJspvuonE2rUMPe1U4mVlvd2tPqcnVxGKiPRlGsEaoPYqHs+ZY8+nMFbEAxvnMKH4AI4pO5l5G+6kMrljl+AKYHjBSIYzEoCywt37FjhdMfSUUyCZpOQzn2HwcZ/r7e6IiEgfpxEsIZlqIM/imBlbExU0pBrYo2jP3u6W7IY0giUiEmgES4jHmpO5RxRo2ktERKS7tIpQREREJMcUYImIiIjkmAIsERERkRxTgCUiIiKSYwqwRERERHJMAZaIiIhIjinAEhEREckxBVgiIiIiOaYAS0RERCTHFGCJiIiI5JgCLBEREZEcU4AlIiIikmMKsERERERyTAGWiIiISI4pwBIRERHJMQVYIiIiIjmmAEtEREQkxxRgiYiIiOSYAqw+JJVIUv36Zty9t7siIiIi3RDv7Q5IUPGXVdQ/9R4AyW11DD1mfC/3SERERLpKI1h9gDemPgyuAFJViV7sjYiIiHSXAqw+oH7l9uYfhsQYNH3PXuuLiIiIdJ+mCPuAwv2GMfzsSRQdOIK8QQW93R0RERHpJgVYfYDlxSg9ZExvd0NERERyRFOEIiIiIjmmAEtEREQkxxRgiYiIiOSYAiwRERGRHFOAJSIiIpJjCrBEREREckwBloiIiEiOKcASERERyTEFWCIiIiI5Zu7eMwcyqwcqeuRgItJbyty9sLc7ISLS23oswBIREREZKDRFKCIiIpJjCrBEREREckwB1gBlZs+Y2R+z7LvMzDz6/i4zczN7OkvZSdH+jHPNZvZWtH9qhn1HNdVNeyTNbJOZ3WNm5Vna/DczW9jxsxUREelZCrCkIxqAGWY2NsO+84BswdV04OPAcuDrbbT/WWBs9BgPnAMcAsw3M2vR5reBazvZfxERkR6lAEs64k3CCtBZGfadCzyXpd6XgdeBu4HzzWxwlnJb3H1T9Njg7s8BPwKmAtMAzGxfM3sSuAZY1vVTERER+egpwJKOaATuB76QvtHMDgb2Bh5pWcHMSgjB1xPAn4BBwAWdOGYy+loXfT0M2EgYEXulE+2IiIj0OAVY0lH3AoeZ2d5p284DHgJqMpT/AjAEmOfuSwkjWV9r7yBmlmdmnwCuiuqsAHD3ue5+obuv6dZZiIiI9AAFWNJRLwHrCPlRRLlR5wL3ZCn/ZWCJu78Z/TwXmGJmR2Yo+6qZVZlZFVAPLAI2AbPcPZXDcxAREekRCrAGrgayv/4xmqfoAPBwRdp5NE8THg4UA39pWdnMJkf7703bfC+QAr6R4XhnAgdHjwnAIHc/zt3f7dipiIiI9C0KsAaurcCwLPtGAh9k2P5H4BAzm0CYHrzP3ZMZyl0aff1xdNmFJLCW8H47I8NqxLXuvjJ6rHX3OkRERHZjCrAGrkXAp8ysNMO+GWRIJHf31wiXXDiXsKJwbssyZpYPfAl4HjiI5pGpgwmBVz7wlRz0X0REpM9SgDVw3UlYofeImc0ws3FmdqiZ3Uq4LlW2a039EbgSqHb3lzPsPw0YDdzg7m+nP6JjLgG+ambxnJ+RiIhIH6EAa4By963AocAawkjUCuB/gL2AGe7+tyxV7yWsDrw3y/4vR222unRDlMd1XXSM07rTfxERkb7MwmeeiIiIiOSKRrBEREREckwBloiIiEiOKcASERERyTEFWCIiIiI5pgBLREREJMcUYImIiIjkmAIsERERkRxTgCUiIiKSYwqwRERERHJMAZaIiIhIjv0/33pSlqQhFnYAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "sc.set_figure_params(dpi_save=200)\n", "\n", "sc.pp.neighbors(adt, n_neighbors=15, metric='cosine', use_rep='X')\n", "sc.tl.umap(adt)\n", "# sc.pl.umap(adt, color=['dataset', 'celltype'], ncols=1)\n", "\n", "ftype = ['.svg', ''][1]\n", "sc.pl.umap(adt, color='dataset', save=f'-dataset{ftype}')\n", "sc.pl.umap(adt, color='celltype', save=f'-ctype{ftype}')" ] }, { "cell_type": "markdown", "id": "e2ed0d50", "metadata": {}, "source": [ "Store UMAP coordinates:" ] }, { "cell_type": "code", "execution_count": 12, "id": "56f522e1", "metadata": {}, "outputs": [], "source": [ "obs_umap = adt.obsm['X_umap']\n", "obs['UMAP1'] = obs_umap[:, 0]\n", "obs['UMAP2'] = obs_umap[:, 1]\n", "obs.to_csv(resdir / 'obs.csv')\n", "adt.write(resdir / 'adt_hidden_cell.h5ad')" ] }, { "cell_type": "markdown", "id": "6f3b85ad", "metadata": {}, "source": [ "Setting UMAP to the original adata" ] }, { "cell_type": "code", "execution_count": 13, "id": "051c2c98", "metadata": {}, "outputs": [], "source": [ "adata1.obsm['X_umap'] = obs_umap[obs_ids1]\n", "adata2.obsm['X_umap'] = obs_umap[obs_ids2]" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.8" } }, "nbformat": 4, "nbformat_minor": 5 }